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Abstract

We use real and financial restrictions from a dynamic multisector production-based

asset pricing model and U.S. manufacturing data for GMM estimation of salient pa-

rameters governing recursive CES preferences. Industry investment and production

data provide strong instruments due to high autocorrelations. We obtain reasonable,

effi cient estimates of risk-aversion and IES. In contrast, we obtain weak identification

using only asset market restrictions with returns and aggregate consumption as instru-

ments. Identification diagnostics indicate that modeling product variety, real structural

restrictions, and production-based instruments each contribute to strong identification.

We quantitatively show a strong, negative relation of product elasticity of substitution

and equity risk-premiums.
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1 Introduction

A long-standing literature estimates risk aversion and the intertemporal elasticity of sub-

stitution in consumption (IES) using GMM and data on aggregate (or market level) asset

returns (Hansen and Singleton (1982, 1983), Epstein and Zin (1991)). Typically, lagged

consumption and (aggregate) returns are utilized as instrumental variables (IVs). But it is

well known that these IVs are weak because of low autocorrelation in returns as well as

low cross-autocorrelations in consumption and returns, i.e., these tests suffer from a weak

identification problem (Stock and Wright (2000)). Our study utilizes an empirical test de-

sign with two novel features relative to the literature: We model consumer preferences for

product variety, and we exploit highly autocorrelated industry production data that serve

as strong IVs. Utilizing a multisectoral production-based asset pricing model with constant

elasticity of substitution (CES) consumer preferences over product variety, we obtain robust

and effi cient estimation of salient parameters governing consumer preferences: risk aversion,

IES, and the product elasticity of substitution (ES). The estimated parameters are econom-

ically appealing. We find that adding real structural restrictions from industry production

and investment equilibrium paths, as well as incorporating preferences over product variety,

helps explain the strong identification of risk aversion and IES (along with the ES).1

At the microeconomic level, agents choose consumption bundles (or baskets) of various

types of consumption goods produced by firms in different sectors, which is addressed by

existing microeconomic theory (Arrow and Hahn (1971)). Shareholder value maximization

then implies that the production decisions of public firms will reflect the preferences of their

equity owners who are also consumers. Hence, in a realistic multigood, or multisector con-

text, parameters describing consumer preferences should be reflected not only in aggregate

1While our multisector model considers consumer goods as well as intermediate goods sectors, for expo-
sitional parsimony we focus on consumer goods industries to facilitate comparisons with the received asset
pricing and applied economics literature.
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consumption and asset returns but also in industry-specific production information,2 poten-

tially enhancing empirical identification. The results verify that this intuition has significant

empirical content: Our estimation approach significantly improves identification of struc-

tural parameters describing consumer preferences, relative to benchmark estimations using

equity returns and aggregate consumption data alone.

We use GMM with heteroskedasticity- and autocorrelation-consistent inference. For this

estimation, we utilize industry data on capital, investment, materials inputs, and industry

productivity from the NBER-CES database of U.S. manufacturing industries. As we indi-

cated above, an important aspect of the industry production data is the high levels of own

and cross-autocorrelations in the endogenous variables, i.e., investment and material inputs.

This is consistent with the literature that documents high short run predictability of capital

investment (Eberly, Rebelo and Vincent (2012)). Thus, in contrast to the weak IV problem

with asset returns and consumption growth, using lagged industry production inputs as IVs

allows stronger correlation with the optimality conditions related to firms’investment and

input choices, and hence stronger identification of the structural parameters.

Our estimation methodology yields strong joint identification of risk aversion, IES and

ES. The point estimates are statistically significant and have low dispersion across different

specifications– or choice of IVs– and are economically appealing. The risk aversion estimate

is clustered around 5, well within the range of risk aversion values considered reasonable in

the literature (Mehra and Prescott (1985)). The IES estimates cluster around 0.2 and the

tests strongly reject the null of zero IES. The literature reports a wide range of estimates

for IES. A long-standing literature finds IES in the low range using aggregate data (Hall

(1988), Epstein and Zin (1991), van Binsbergen et al. (2008)). More recently, using a

novel structural estimation approach, based on “mortgage notches” in the UK, Best et al.

2This applies to general equilibrium production models with complete markets (Cochrane (1991)) or
with incomplete markets (Horvath (2000)). More generally, even with agency problems due to separation
of ownership and control (Berle and Means (1932), Jensen and Meckling (1976)), the preferences of equity
owners are not irrelevant for managers.
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(2020) also report estimates of IES around 0.1, while a meta-analysis of IES estimates in the

literature finds estimates clustered between 0.3-0.4 (Havránek (2015)).3 The estimates of

risk aversion and IES also imply that consumer risk preferences are not statistically distinct

from the power expected utility specification. Finally, the estimates of ES for manufactured

consumption goods cluster around 2, which is consistent with the estimates in the literature

for manufactured goods using import data (Broda and Weinstein (2006)).

In light of these estimation results, we investigate the contributions to improved iden-

tification of explicitly recognizing (or modeling) consumer preferences over product variety

(through the ES); utilizing real restrictions, i.e., the intertemporal capital investment and in-

tratemporal materials input optimality conditions; and using investment and production data

in IVs. We find that structural restrictions added by preferences for variety– through the

ES– aids identification of the representative consumer’s risk aversion and IES. The analysis

also shows that identification of risk aversion and IES deteriorates sharply if we “eliminate”

the real optimality conditions. Consistent with intuition, our analysis indicates that the in-

tertemporal investment Euler condition contributes significantly to the identification of risk

aversion and IES, whereas the intratemporal materials input condition contributes signifi-

cantly to the identification of ES. Consequently, both the real restrictions contribute to the

identification of the parameters of interest.

Similarly, estimates of risk aversion and IES are no longer statistically significant, and

model performance deteriorates, when we do not use production data in IVs. These diag-

nostics are consistent with the view that investment and production data provide strong IVs

for identification in asset pricing models.

Overall, our analysis strongly suggests that consumer preferences for product variety–

parameterized in our model by the ES– significantly affect the equilibrium risk premium.

3However, another strand of the literature reports estimates of IES in excess of 1 (see Bansal and Yaron
(2004)).
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Hence, making the ES explicit in the model’s equilibrium conditions imposes additional

structural restrictions on returns, compared with models where the role of the ES is sup-

pressed. It is, thus, important to examine whether and how the ES affects equilibrium risk

premium. Indeed, the relation of consumer preferences for product variety and equity risk

premium is of independent interest, but this topic is relatively under-explored. Our frame-

work allows a quantitative examination of how references for variety, risk aversion, and the

IES jointly affect industry-level equity risk premium (ERP) that attract substantial interest

in the literature (e.g., Fama and French (1997)) and the investment industry.

There is an intuition that, at the industry level, ERP should ceteris paribus be positively

related to product differentiation. This is because commodities and basic consumption goods

with low product differentiation exhibit small cyclical variation in price-cost markups and,

hence, profits. In contrast, highly differentiated goods have relatively large cyclical variation

in profit margins, amplifying the negative covariation between the stochastic discount factor

and returns. But, conceptually and empirically, goods with low product differentiation

have greater demand price elasticity compared with highly differentiated goods (Berry et al.

(1995), Broda and Weinstein (2006)). Because the ES captures demand price elasticity in

the CES setting, intuitively ES and ERP should be negatively related.

Our quantitative analysis indeed verifies that ES and ERP are negatively related. That

is, differentiated goods ceteris paribus have higher ERP relative to non-differentiated goods.

Intuition also suggests that more risk averse investors or those with lower IES (when IES is

less than one) will demand greater risk premium due to the higher procylicality of profits

of goods with inelastic demand. And this is confirmed by our analysis. Because of these

interaction effects, sectoral ERP can be sizeable for medium risk aversion and low IES–

consistent with our point estimates for these parameters– in industries with low demand

elasticity; conversely, the ERP can be low even with relatively large risk aversion in high de-

mand elasticity industries. Therefore, variations in product characteristics measured through
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their price elasticities are consistent with cross-sectional dispersion in industry ERP that is

observed in the data.

To our knowledge, our study is the first to show that structural restrictions from in-

vestment and production equilibrium paths in multi-good settings, and strong IVs offered

by highly autocorrelated industry variables, allow robust and effi cient estimation of struc-

tural parameters describing consumer preferences. We point out that explicit recognition of

consumer preferences for variety (through the ES) and utilization of industry-level real equi-

librium restrictions– along with the attendant use of production data– are together needed

to improve effi cient estimation of risk aversion and IES, parameters that are of particular

interest to financial economists. Notably, a growing literature estimates ES using imports

and consumption data (Feenstra (1994), Broda and Weinstein (2006), Redding and Wein-

stein (2020)). By using moment conditions in our multisector model and utilizing sectoral

production, investment, and asset return data, we present a novel estimation framework for

the joint estimation of risk aversion, IES and ES through GMM.

We add to the literature on production-based asset pricing models (Cochrane (1991),

Jermann (1998)), in particular to the growing strand on multisector general equilibrium

models (Papanikolaou (2011), Kogan and Papanikolaou (2013, 2014), Doshi and Kumar

(2025)). While the existing literature typically focuses on implications of such models for

asset prices, our study is among the first to utilize such models for effi cient estimation

of parameters governing consumer preferences over stochastic consumption baskets, with

industry-level production data. Furthermore, we exploit the multisector setting to quanti-

tatively examine the interaction of risk aversion, IES, and ES on (industry-level) equity risk

premiums. We highlight the importance of considering consumer preferences for product

variety in helping explain variations in observed industry-level risk pemiums.

Our quantitative analysis is linked especially to the literature that modifies the canonical

aggregate asset pricing model to help resolve the equity premium puzzle. One strand of this
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literature argues that consumption volatility measured from National Income and Product

Accounts (NIPA) may not correctly represent the actual consumption risk faced by investors.

For example, Ait-Sahalia, et al. (2004) observe that NIPA consumption weights focus on ba-

sic consumption goods. By incorporating luxury good consumption through nonhomothetic

preferences, they are able to explain observed equity premium at relatively low levels of risk

aversion; hence, our analysis is consistent with their results. Meanwhile, Parker and Juillard

(2005), Savov (2011) and Kroencke (2017) point out other sources of mis-measurement of

consumption risk. Another strand of the literature emphasizes the role of long run risks in

exchange and production economies (Bansal and Yaron (2004), Croce (2014)). Our study

suggests that the composition of the aggregate consumption basket– in terms of demand

price elasticities of component goods– is a significant determinant of aggregate consumption

risk.

Finally, our results complement findings in other areas of finance where richer parameter-

ization of consumer preferences and using novel data improves identification. For example,

Huang and Shaliastovich (2014) show that using recersive preferences– in particular, im-

posing parameteric restrictions for early resolution of uncertainty– and using equity options

data help identify objective probabilities and risk adjustments.

The paper is organized as follows. Section 2 describes the model. Section 3 undertakes

estimation of the model. Section 4 analyzes the determinants of estimation effi ciency. Section

5 quantitatively examines the relation of preferences for product variety to the equity risk

premium. Section 6 summarizes the analysis and concludes.

2 A Multi-Sector General Equilibrium Model

In a discrete time, infinite horizon setting, we consider an economy consisting of J compet-

itive sectors (or industries), each composed of a continuum of identical firms of unit mass,
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and producing a different good. It is therefore notationally convenient to exposit the model

at the sectoral level. Sectors are partitioned into Jc sectors that produce (final) consumption

goods and sectors that produce two types of intermediate goods: Jh sectors that produce

material inputs for production and Jk sectors that produce capital inputs.

2.1 Consumption and Portfolio Investment

There is a continuum of identical consumer-investors (CI) in the economy; the number of

CIs is normalized to unity, without loss of generality. The (representative) CI’s income

each period comprises of dividend payouts from firms, net changes in the value of her/his

stock portfolio, and income from a riskless security. Time is discrete At each t, the CI

chooses the consumption vector ct = (c1t, ...cJc,t), taking as given the corresponding vector

of consumption good prices pct , with the first consumption good serving as the numeraire,

without loss of generality.

Firms are unlevered, publicly owned and their equity ownership trades in frictionless

security markets. The CI also has access every period to a (one-period) risk-free security

(f) that pays a unit of the numeraire good next period. The mass of risk-free securities

is fixed at unity. The CI’s asset holdings at the beginning of the period are denoted by

the (J + 1)−dimensional vector qt. Along with consumption, the CI simultaneously chooses

her/his new asset holdings qt+1, taking as given the corresponding (ex-dividend) asset prices

st. The dividend payouts per share are denoted by dt (with the risk-free asset payouts fixed

at 1).

The representative CI has Epstein and Zin (1989) preferences over intertemporal streams

of consumption bundles {Ct}∞t=1 that are expressed in recursive form as

Ut =

[
(1− α)C1−η

t + αEt
[
U1−γ
t+1

] 1−η
1−γ

] 1
1−η

, (2.1)
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when γ 6= 1 and η 6= 1. In (2.1), Ct is the aggregated consumption index with constant

elasticity of substitution (CES) among consumption goods, that is,

Ct =

[
Jc∑
j=1

φj(cjt)
(σ−1)/σ

]σ/(σ−1)

, (2.2)

where σ > 1 is the ES and 0 < φj < 1 are the utility weights; α controls the subjective rate

of impatience; γ determines the degree of risk aversion; and η−1 measures the intertemporal

elasticity of substitution (IES) over consumption baskets.

The CI’s budget constraint is given by

pct · ct ≤ qt · (dt + st)− qt+1 · st ≡ Wt. (2.3)

Because preferences are strictly increasing, the budget constraint (2.3) will be binding in

any optimum and hence Wt also represents the total consumption expenditure at t. In the

standard fashion for Dixit and Stiglitz (1977) preferences, intratemporal optimization yields

the consumption demand functions (see the Online appendix)

cjt(p
c
t ,Wt) =

Wt

Pt

[
Ptφj
pjt

]σ
(2.4)

where Pt =

[
Jc∑
j=1

(φj)
σ(pjt)

1−σ

]1/(1−σ)

is the aggregate price index. At the optimum, the

aggregate real consumption Ct ≡ C(ct) = Wt

Pt
, which is the real income.

Meanwhile, the CI’s portfolio optimization equates the real current security price to

expected present value of real equity payoffs next period. The real SDF (or pricing ker-

nel) is the intertemporal marginal rate of substitution of real consumption (IMRS). Letting

Λt ≡ ∂Ut
∂Ct = (1 − α)C−ηt Uηt denote the marginal valuation at t, the SDF for the one-period

investment horizon is Λt,t+1 ≡ Λt+1
Λt
. Using Ct = Wt

Pt
and following Epstein and Zin (1989),
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the real SDF can be written

Λt+1

Λt

= αθ
(
GW
t+1

GP
t+1

)−ηθ
Rθ−1
C,t+1, θ ≡

1− γ
1− η , (2.5)

where GW
t+1 and G

P
t+1 are the gross growth rates in aggregate income and the price index

between t and t+ 1, respectively, and RC,t+1 is the gross one-period (real) return on an asset

that pays aggregate consumption as its dividend.4 Hence, asset prices satisfy

st
Pt

= Et
[
Λt,t+1

(
dt+1 + st+1

Pt+1

)
,

]
(2.6)

which can be expressed in more conventional (or nominal terms) by defining the one-period

ahead nominal SDF Mt,t+1 ≡ Pt

(
Λt,t+1
Pt+1

)
. Since the one-period return between t and t + 1

in each sector is Rj,t+1 =
(
dj,t+1+sj,t+1

sj,t

)
, and the return on the one-period nominally riskless

bond is Rf,t+1 = (1/sf,t), in the standard fashion Equation (2.6) can be written as the

restriction

1 = Et [Mt,t+1Rt+1] , (2.7)

where 1 and Rt+1 are the unit and gross nominal returns vectors, respectively.

2.2 Production and Dividends

The representative firm in the typical sector produces output Yt through the production

function:5

F (Kt, Ht, At) = At(Kt)
ψK (Ht)

ψH , (2.8)

where Kt is the firm’s capital stock at the beginning of t; Ht are materials input chosen

during the period; At represents a stochastically evolving industry-wide productivity level;

4More precisely, Λt+1

Λt
=
(
GWt+1

GPt+1

)η (
Ut+1

Et[U1−γ
t+1 ]

1
1−γ

)η−γ
, which can be shown to equal (2.5).

5For notational ease, we suppress subscripts for sectors and firms unless necessary for exposition.
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and ψK ∈ (0, 1), ψH ∈ (0, 1) are the output elasticities of capital and inputs, respectively.

The sectoral productivity shocks follow a first order log-autoregressive stochastic process,

that is,

at = ρaat−1 + εat, (2.9)

where εat is a normal mean zero variable with a stationary variance-covariance matrix (across

sectors) Φa. Capital stock Kt evolves according to

Kt+1 = (1− δ)Kt + It, (2.10)

where δ is the per-period depreciation rate and It is the investment at t.

Similar to the literature (Kiyotaki (1988), Horvath (2000)), we assume that firms in each

sector combine intermediate goods to form a composite material input and investment good

using the sector-specific CES functions:6

Ht =

[
Jh∑

n=Jc+1

ϕhnj(Hjn,t)
(ζhj−1)/ζhj

]ζhj /(ζhj−1)

; It =

[
J∑

n=Jh+1

ϕknj(Ijn,t)
(ζkj−1)/ζkj

](ζkj−1)/ζkj

, (2.11)

where Hjn,t is the quantity of material intermediate good purchased by sector j from sector

n = Jc + 1, ..., Jh; ϕ
h
nj is the sector-specific weight of this good, and ζ

h
j ≥ 1 is the ES among

material intermediate goods in sector j. Analogously, one interprets Ijn,t, ϕknj and ζ
k
j for

investment intermediate goods. The costs of material and investment intermediate goods

are Υjh,t =

Jh∑
Jc+1

pntHjn,t and Υjk,t =
J∑

Jh+1

pntIjn,t, respectively.

Sectors choose intermediate goods in a two-step process. In the first step, Ht and It are

determined; in the second stage, conditional on (Ht, It), the individual intermediate goods

Hnt and Int are chosen to minimize the intermediate cost expenditures Υht and Υkt. This

6The counting notation in (2.11), the J sectors are partitioned as {1, ..., Jc; Jc + 1, ..., Jh; Jh + 1..., J}.
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process yields the demand function for intermediate goods as (see the Online appendix):

Hnt = (ϕhnj)
ζhj

[
pnt
Xt

]−ζhj
Ht; Int = (ϕknj)

ζkj

[
pnt
Zt

]−ζkj
It, (2.12)

where Xt =
[∑Jh

n=Jc+1(ϕhnj)
ζhj (pnt)

1−ζhj
]1/(1−ζhj )

and Zt =
[∑J

n=Jh+1(ϕknj)
ζkj (pnt)

1−ζkj
]1/(1−ζkj )

are the materials and investment intermediate goods price indices for sector. It can be

shown that the effective composite material input demand Ht is such that XtHt = Υht, and

similarly ZtIt = Υkt. Apart from the costs of investment goods, firms are subject to convex

capital adjustment costs so that the total investment cost function is

O(It, Kt) = ZtIt + 0.5υ

(
It
Kt

)2

Kt, (2.13)

where υ is the sector-specific capacity adjustment cost parameter. The process for determi-

nation of (Ht, It) will be specified below in the characterization of equilibrium.

The number of shares outstanding in each sector at the beginning of t is denoted by Qt.

Net cash flows are paid out as dividends. Then payouts from sector at t are

Dt = ptYt −XtHt −O(It, Kt). (2.14)

Dividends can be negative, which are financed by equity issuance.

2.3 Equilibrium

The state vector for firms in the typical sector at beginning of t is Ωt = (Wt, Pt, At, Xt, Zt, Kt);

the first four elements of this vector are taken as exogenous by firms, while Kt and qt are

dynamically endogenous. At every t, conditional on Ωt, the representative firm in each sector

is instructed by shareholders to choose {Ht+τ , It+τ}∞τ=0 to maximize the conditional present
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value of real dividends given by7

Et

[ ∞∑
τ=0

Λt,t+τ

(
Dt+τ

Pt+τ

)]
, (2.15)

subject to the production and capital accumulation constraints specified above.

In equilibrium, firms follow optimal investment and input choice strategies taking as

given the prices for the industry good pt, while consumers follow optimal consumption and

portfolio policies represented by (2.4) and (2.6). The model is closed by the requirement

that product and asset markets clear. It is convenient, from the viewpoint of our empirical

analysis, to express firms’objective functions in nominal terms. Defining the nominal SDF

for future payoffs at t as Mt,t+τ ≡ Pt

(
Λt,t+τ
Pt+τ

)
, τ = 0, 1, .., the objective function in (2.15)

can be re-expressed as Et

[ ∞∑
τ=0

Mt,t+τDt+τ

]
. Since Λt,t+τ ≡ Λt+τ

Λt
by construction, it will

follow that Mt,t+τ = Mt+τ

Mt
, τ = 0, 1, 2...(Mt,t = 1). Then, using the Bellman representation,

we can define the nominal cum-dividend value function of the representative firm along the

equilibrium path recursively as a function of the state:

Vt(Ωt) = max
It,Ht≥0

Dt + Et
[
Vt+1(Ωt+1)

]
. (2.16)

The ex-dividend value of the firm will be denoted St.

2.4 Equilibrium Characterization for Consumer Goods

We will focus on the asset pricing implication of consumer goods industries (sectors j =

1, ..., Jc) for reasons of space and expositional parsimony. There are two principal reasons for

this focus. First, the existing empirical asset pricing literature mostly focuses on ERP driven

by the (direct) consumption of the representative consumer, so it facilitates intuition on the

7In general, there will not exist complete contingent markets in this model; hence, the discount rate is
given by the representative consumer’s marginal utility of real consumption (Brock 1982; Horvath 1998).
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determinants of sectoral ERP– through comparisons of our results with the literature– to

focus on consumer goods industries. Second, the demand functions for consumer goods– and,

hence, their sales and dividends– involve the intratemporal ES and sectoral taste parameters

(see (2.4)); these parameters have been estimated by a long literature, which provides a useful

benchmark for checking the “reasonableness”of our estimates. In contrast, there is sparse

literature on the estimation of the sector-specific CES production and investment parameters

ζh and ζk that drive the demand functions of intermediate goods producers.8

We now present the optimality conditions for the representative firm in a consumer goods

sector along the equilibrium path. Since the goods markets clear in equilibrium, we can use

(2.4) to solve for the inverted demand functions for consumer goods sectors as

ωt(Yt) = φ
(
WtP

σ−1
t

)1/σ
(Yt)

−1/σ . (2.17)

Intuitively, equilibrium prices for goods are ceteris paribus positively related to the aggregate

index, holding fixed the consumption basket. Along an equilibrium path, for each t and state

Ωt, the optimality conditions for (Ht, It) are given, respectively, by

ptFH(Kt, Ht, At) = Xt, (2.18)

Zt + υ

(
It
Kt

)
= Et

[
Mt,t+1

{
pt+1FK(Kt+1, Ht+1, At+1) + 0.5υ

(
It+1

Kt+1

)2

+

(1− δ)
(
Zt+1 + υ

(
It+1

Kt+1

))}
, (2.19)

8Conceptually, the extension of the equilibrium conditions to intermediate goods sectors in Proposition 1
below is straightforward, since it require substituting the consumer goods demand functions with intermediate
goods demand functions from (2.12). However, extending the quantitative and empirical analysis to study
the asset pricing implications of intermediate goods producers is an interesting avenue for future research.
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where Kt+1 is given by (2.10). The goods market clears in each sector so that

pt = φ

(
Wt

Pt

)1/σ

Pt [F (Kt, Ht, At)]
−1/σ . (2.20)

Finally, the equilibrium dividends Dt then satisfy (2.14), while the ex-dividend value St is

given recursively by

Et
[
Mt,t+1

(
Dt+1 + St+1

St

)]
= 1. (2.21)

Equation (2.18) reflects the optimality condition that equates marginal cost of inputs (Xt)

to the marginal revenue productivity of inputs at the competitive (or market clearing) price.

Equation (2.19) is the Euler condition showing the trade-off between the current marginal

cost of investment– represented by the left-hand side– with its discounted expected marginal

value– given by or the right hand size.

3 Estimation of the Model

In this section, we undertake joint estimation of three salient parameters governing prefer-

ences, namely (γ, η, σ), through GMM. We focus on these parameters for estimation par-

simony, which enhances (estimation) effi ciency.9 Furthermore, the joint estimation of risk

aversion, IES and ES is novel and of intrinsic interest to both finance and applied economics

literatures.
9In particular, when estimating the discount factor α, we do not obtain consistent or economically ap-

pealing estimates, even when estimating (γ, η, α), with exogenous values of ES. With some specifications,
we obtain estimates exceeding 1, similar to other estimation attempts using additive utility (Hansen and
Singleton (1983)) and recursive preferences (Epstein and Zin (1991)); or we obtain significantly negative
values of the IES, which implies that consumption increases with interest rates.
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3.1 Data

For empirical analysis of the model, we need industry data on capital, investment, materi-

als input, sales, and productivity. We take these data from the NBER-CES manufacturing

database. The latest data available are for 1958-2018 (annually). However, because industry

productivity data are generally available only through 2016, our sample period is 1958-2016.

The NBER-CES data are in nominal terms. While deflators for materials costs and invest-

ment are provided, the appropriate deflators for output and (especially) capital stock are

not apparent. For this reason, we work with the nominal SDF in the Euler condition for

investment (Equation 2.19) and, therefore, also asset returns. Consistent with the theoret-

ical focus, we restrict attention to consumer goods industries subsample of the NBER-CES

database by mapping 1997 North American Industry Classification System (NAICS) codes

to four-digit 1987 Standard Industry Classification (SIC) codes.10 Our industry variables are

taken as the means of the corresponding variables in the data for consumer goods industries.

As the proxies for aggregate income (W ) and consumption basket (C), we use per-capita

national income and consumption expenditures from the Federal Reserve Bank of St. Louis

(FRED).11 We note that the aggregate price index in the model, P, is not necessarily the

CPI, since along the equilibrium path consumption basket Ct = Wt

Pt
. The appropriate price

index is thus the “ideal”(or CES) price index, which is not generally available (see Redding

and Weinstein (2020)). We therefore use the implied equilibrium P from the income and

consumption data. We use the deflators for the material costs (Ht) and investment (It) as

measures of Xt and Zt.

We compute sectoral annualized monthly returns for as value-weighted portfolio returns

of component industries. We take the sectoral annual returns as the value-weighted portfolio

returns of all firms (in the sector). In particular, we first compute the value-weighted portfolio

10The list of consumer goods industry NAICS codes is obtained from Statistics Canada (2021).
11The FRED data are derived from the National Income and Product Accounts of the Bureau of Economic

Affairs.
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returns using monthly data and then compute the calendar year returns using the monthly

time series. When needed, we apply the consumption price deflator (CPI) to adjust the

returns data to real terms. The market and risk free returns are obtained from Kenneth

French’s website.

3.2 Basic Moment Conditions

Our model provides two “real side”moment conditions from the Euler conditions (2.18)-

(EulerIC), as well as conditions from the asset market equilibrium (see (2.7) or (2.21)).

These conditions form the basis of our estimation, and are specified succinctly below.

0 = Et
[
φ (Wt)

1/σ (Pt)
σ−1
σ (Yt)

− 1
σ

(
Yt
Ht

)
−Xt

]
, (3.1)

0 = −OI(It, Kt) + Et
[
Mt,t+1

{
pt+1FK(Kt+1, Ht+1, At+1)−

OK(It+1, Kt+1) + (1− δ)OI(It+1, Kt+1)
}]

= 0, (3.2)

0 = Et
[
Mt,t+1R̃t+1

]
, (3.3)

where (from Equation (2.13)) OI(It, Kt) = Zt + υ
(
It
Kt

)
, OK(It, Kt) = −0.5υ

(
It
Kt

)2

, and

R̃t+1 is the vector of excess returns. In particular, we use the aggregate or market ERP,

R̃Σ
t ≡ RΣ

t − Rft, the consumer goods manufacturing sector (CM, j) ERP, R̃jt = Rjt − Rft,

and the excess market returns relative to CM sector returns R̃Σ,j
t = RΣ

t − Rjt. In addition,

and similar to Epstein and Zin (1991), we use the real aggregate return RΣ
t as a proxy for

RCt, that is, the gross return on the asset that pays aggregate consumption as its dividend.12

In the usual way, we generate overidentifying restrictions through the use of instrumental

variables (IVs), which we describe next.

12Hence, in our empirical tests, Mt,t+1 = Pt

(
αθ
(
Ct+1
Ct

)−ηθ
(RΣ
t )θ−1

Pt+1

)
.
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3.3 IVs and Time Series Characteristics

Because lagged endogenous variables are natural IVs, the sample own and cross-autocorrelations

of endogenous variables in the moment conditions of our model are of particular interest.

Panel A of Table 1 presents these correlations for the asset market conditions for one and

two year lags. Consistent with the literature, there is relatively low cross-autocorrelations

(for annualized observations) in per capita consumption growth GC
t and aggregate ERP

(R̃Σ
t ) in our sample. Not surprisingly, there is high contemporaneous correlation (0.75) be-

tween CM sector ERP (R̃jt) and aggregate returns. But we also find that the own and

cross-autocorrelation of R̃jt are essentially commensurate with those observed for aggregate

returns. For example, the correlation between current and one-period lagged aggregate re-

turn is −0.08, while the corresponding correlation is about −0.06 for the industry returns.

Furthermore, the cross-autocorrelation between lagged industry returns and current con-

sumption growth is not significantly different than the corresponding correlations between

market returns and consumption growth. In sum, utilizing industry returns in IV estima-

tion would add information but not necessarily resolve the weak IV problem in structural

estimation of asset pricing models.

In contrast, Panel B of Table 1 shows very high own and cross-autocorrelations in the

industry-level industry investment (It) and materials input (Ht) in the CM sector. The

high serial correlation in capital investment is also noted elsewhere in the literature (e.g.,

Eberly, Rebelo and Vincent (2012)). Thus, as we mentioned already, there is a potential

here that industry investment and material inputs can be utilized as strong IVs in empirical

estimation, to which we now turn.
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3.4 Estimation with Equity Returns

To set up useful benchmarks, we first follow the standard approach and estimate (γ, η) by

using the equilibrium asset return equation (3.3) and setting up moment conditions in terms

of the aggregate (or market) equity risk premium (ERP), that is, Et
[
ΓΣ
t

{
Mt,t+1R̃

Σ
t+1

}]
= 0.

Here, ΓΣ
t is a vector of IVs that– in the usual fashion– use only aggregate equity returns,

the risk free return, and aggregate consumption data. Similar to the literature, we use

lagged values of the aggregate risk premium as well as lagged consumption growth as IVs.

In addition to the lagged covariates, we use an IV that is a nonlinear function of (R̃Σ
t−1, G

C
t−1)

to allow for nonlinear effects:

ΓΣ
nl,t ≡

(
R̃Σ
t−1, G

C
t−1, R̃

Σ
t−1 ×GC

t−1, (R̃
Σ
t−1)2, (GC

t−1)2
)
. (3.4)

Now, the SDF Mt,t+1 involves the discount factor, α. Because our production data are at

an annual frequency, we use 3% annual discount rate, that is α = 0.97, consistent with

multisector general equilibrium models in the literature (e.g., Horvath (2000)).

The first two rows of Table 2 display the estimation results with the moment restrictions

involving the market ERP, as well as tests of over-identifying restrictions through the chi-

square statistic χ2(DF ). Based on the SDF for Epstein and Zin (1989) preferences, we

estimate θ̂ and η̂ and deduce the implied γ̂ (see Equation (2.5)), which is displayed in

parentheses next to θ̂. For various combinations of lagged covariates (R̃Σ
t−`, G

C
t−`), ` = 1, 2, 3, 4,

we find statistically insignificant estimates with implausibly large values of risk aversion and

very low (or even negative) values of IES that are also not economically appealing. For

expositional convenience, the first row shows the results when we use the IV (R̃Σ
t−`, G

C
t−`) with

lags up to two years, and the second row displays the results when we utilize the nonlinear

IV. The p-values of the J-statistics imply rejection of the overidentifying restrictions. The

fragility of the risk aversion estimates, with a large change in the coeffi cient value across the
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two specifications, is indicative of the weak identification noted in the literature (Epstein

and Zin (1991), Stock and Wright (2000)).

Because we have sectoral– that is, consumer manufactured goods– equity returns, we

can undertake estimation using moment conditions in Equation (3.3) for industry returns,

that is, utilize orthogonality conditions of the form Et
[
Γjt

{
Mt,t+1R̃j,t+1

}]
= 0. For this

estimation, we also construct a nonlinear IV along the lines of (3.4), that is,

Γjnl,t ≡
(
R̃j,t−1, G

C
t−1, R̃j,t−1 ×GC

t−1, (R̃j,t−1)2, (GC
t−1)2

)
. (3.5)

The results are displayed in the third and fourth rows of Table 2. In the third row, with lagged

sectoral ERP and lagged consumption growth as IVs, we again get insignificant estimates and

the estimates of risk aversion and IES are commensurate with the estimates in the second

row. The fourth row displays the estimation results when we use the nonlinear sectoral

IV, Γjnl,t (given in Equation (3.5)). But this exercise again yields insignificant estimates

similar to those seen in the first three rows. Finally, we can combine aggregate and industry

returns and use moment restrictions of the form Et
[
ΓΣ,j
t

{
Mt,t+1R̃

Σ,j
t+1

}]
= 0 (where we recall

R̃Σ,j
t+1 ≡ RΣ

t+1−Rj,t+1). For the IVs here, we employ one year lagged market and sector returns.

The results are again insignificant and the risk aversion estimate is substantially higher than

earlier estimates and the IES estimate still remains very low.

In sum, estimating parameters of consumer preferences using only moment restrictions

from the asset market equilibrium condition (3.3), utilizing both aggregate and consumer

goods manufacturing industry returns with lagged returns and aggregate consumption growth

as IVs, exhibits weak identification: The estimates are statistically insignificant and fragile,

and yield implausible risk aversion and IES values. Our analysis is, therefore, consistent

with the existing literature.
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3.5 Estimation with Sectoral Production Data

We now use orthogonality conditions from the equilibrium path in both real (i.e., capital

investment and materials) and financial variables to estimate the vector of unknown para-

meters (γ, η, σ). The real moment restrictions are given by Equations (3.1) and (3.2). With

these two real restrictions, we potentially have 5 moment restrictions when we also include

the three asset markets moment conditions used in the previous section, i.e., involving R̃Σ
t ,

R̃jt, and R̃
Σ,j
t .

However, there are well known pitfalls in adding moment conditions with fixed sample

size, especially if they include weak moment conditions since increased estimation effi ciency

comes at the cost of increasing estimator bias (Han and Phillips (2006), Newey and Wind-

meijer (2009)). Furthermore, a large number of moment conditions raises the likelihood of

mis-specification bias through utilization of possible invalid restrictions (Andrews (1999)).

Consequently, our main test design for estimation uses only 4 moment restrictions: the two

real moment conditions and two out of the three excess return restrictions involving market

ERP or industry ERP or the excess aggregate return over the industry return. However,

for robustness we also undertake estimation with all five moment conditions: two from the

product market side and three types of excess return restrictions from the asset market side.

Because of the increased number of moment restrictions, we construct the IVs parsimo-

niously. Hence, we use only lagged returns for the asset market conditions, and lagged control

variables–Ht−` and It−`– for the corresponding optimality conditions ((3.1) and (3.2), re-

spectively). Collectively, we denote these IVs as ΠN , N = 1, 2, 3, 4, and we will specify these

when discussing the results.

As is apparent from Equations (3.1) and (3.2) (or from Equations (2.18)-(EulerIC)),

utilizing the production and investment optimality conditions as moment restrictions requires

specification of the sectoral utility weight φ; input production elasticities (ψK and ψH);
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the depreciation rate δ; and the capital adjustment cost parameter υ. The estimated of

percentage of income spent on manufactured consumer goods in the highest income decile

countries (which includes U.S.) range from around 0.3 (Duarte and Restuccia 2016) to 0.39

(Duarte 2018). We thus set φ as 0.35 for our manufactured consumer goods sector. We

estimate the production function (2.8) via GMM using our sectoral production data and

estimate ψH = 0.75. Consistent with our competitive industries assumption, we set ψK =

1−ψH = 0.25.We note that this capital factor share is close to the factor share of 0.3, which

is often assumed in the real business cycle (RBC) literature.

Meanwhile, because of varying rates of depreciation for different types of capital (equip-

ment, structures, and intellectual property), estimating depreciation rates is challenging.

The literature notes that depreciation rates have been trending upwards because of the in-

creased use of computer equipment and software since this lowers the useful life of capital

stock (Oliner 1989). Moreover, the depreciation rates on such equipment have been rising.

For example, Gomme and Rupert (2007) note that annual depreciation rates of computer

equipment have risen from 15% in 1960-1980 to 40% in 1990s, and give estimates for software

depreciation rates of about 50%. Epstein and Denny (1980) estimate the depreciation rate

of physical capital (in the first part of our sample-period) to be about 13%. Because of in-

creasing use of computerized and higher technology equipment in manufacturing during our

sample period, we use an annual depreciation rate of 20%.13 There is also a wide variation in

the literature regarding estimates of the capital adjustment cost parameter υ. Utilizing US

plant level data, Cooper and Haltiwanger (2006) find υ of around 10% for a strictly convex

adjustment cost function; this is also consistent with small adjustment cost estimates in Hall

(2004). We thus set υ = 0.1.

The results of estimating (γ, η, σ) using real optimality conditions and sectoral production

13This value is also the mean depreciation rate estimated by a detailed study of Canadian manufacturing
data (Gellatly et al 2007).
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data are displayed in Table 3.14 The first three rows are based on 4 moment conditions that

include the aggregate and industry ERP restrictions, along with product market restrictions

(3.1) and (3.2). The IV Π1 = R̃Σ
t−`, R̃j,t−`, ` = 1, 2, 3;Ht−`, It−`, ` = 1, 2, 3. The IV Π2 differs

from Π1 by setting Ht−`, ` = 1, to examine the implications of asymmetry between short run

utilization of material inputs versus the long run effects of investment on capital stock. The

IV Π3 differs from Π2 by using only two year lags for the market risk premium, that is, R̃Σ
t−`,

` = 1, 2. The specification in the fourth row, associated with Π4, substitutes the moment

restriction Et
[
Γj−1

{
Mt,t+1(RΣ

t −Rjt)
}]

= 0 for the restriction Et
[
ΓΣ
−2

{
Mt,t+1R̃

Σ
t

}]
= 0 and

uses RΣ
t−1, Rj,t−1, It−`, ` = 1, 2, 3, and Ht−`, ` = 1 as IVs. Finally, the specification Π5 in the

fifth row uses all 5 moment restrictions with the (equity return) IVs R̃Σ
t−1, R̃j,t−1, R

Σ
t−1 and

Rj,t−1, along with the real IVs utilized in Π2.

In striking contrast to the previous estimation results (Table 2), the point estimates of

the unknown parameter vector (γ, η, σ) in each specification are statistically significant, with

plausible values, and quite robust to changes in IVs and moment restrictions. The estimates

of risk aversion (rounded to the nearest whole number) in all specifications are centered

around 5. More specifically, four out of the five specifications in Table 3 generate risk aversion

estimate of 5, while the other specification yields a risk aversion estimate around 6. Overall,

the risk aversion estimates are well within the range of risk aversion values (2-10) considered

plausible (or reasonable) by the literature (Mehra and Prescott (1985)). Comparing the

statistically significant risk aversion estimates in Table 2 with those in Table 3, it is clear

that utilizing equilibrium restrictions from industry-level real variables substantially reduces

the risk aversion required to explain aggregate and CM sector equity risk premiums in the

data.

Next, the IES estimates in Table 3 cluster around 0.2, and the empirical tests reject the

null of zero IES at p-values significantly below 0.01. As we mentioned earlier, there is no

14For consistency of estimation procedures, the results in Table 3 use the same initial values (for θ and η)
for GMM iterations as in Table 2.
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consensus in the literature on the value of IES. With additive utility and using aggregate

data, Hall (1988) finds low estimates of IES that are not significantly different from zero,

and sets an upper bound of 0.1. Similarly, Epstein and Zin (1991) and van Binsbergen et al.

(2008) estimate parameters of recursive preferences using different approaches and datasets

but nevertheless report low estimates of the IES. More recently, using a novel source of

quasi-experimental variation in interest rates (to address the challenge of finding exogenous

variations in interest rates) and exploiting “notched”mortgage loan schedules in the UK that

imply discrete jumps in mortgage rates at critical loan thresholds, Best et al. (2020) use

individual home refinancing data to estimate IES around 0.1. More generally, a large number

of studies using micro data report IES estimates below 0.4 (Havránek (2015), Havránek et

al. (2015)).15

Note also that the estimates of θ̂ are reliably positive and strictly less than 1. This

implies a negative relation of aggregate returns and the SDF, that is, declines in market

returns generate increases in the SDF and hence the risk premium, which is empirically

appealing. Indeed, this property is present in empirical parameterizations of Epstein and

Zin (1989) preferences commonly used in the literature (e.g., Bansal and Yaron (2004), Croce

(2014)), where the IES exceeds 1 (that is, 1
η
> 1) so that θ is negative (since risk aversion is

generally taken to be higher than 1). However, the estimates in Table 3 imply a preference for

late resolution of uncertainty because γ̂(1/η̂) < 1, which is consistent with other production

and investment based asset pricing studies in the literature (e.g., Papanikolau (2011)).16

While we undertake our estimation with recursive preferences, where (relative) risk aver-

sion and IES are treated as separate parameters, the majority of the specifications in Table

15However, the literature also reports estimates exceeding 1 (Vissing-Jorgensen (2002), Gruber (2013)).
16Evidence supporting the assumption of preference for early resolution of uncertainty is mixed. While

some studies show that parameterization consistent with preference for early resolution can help match
aggregate asset pricing moments (e.g., Bansal and Yaron (2004)), cross-sectional studies that examine the
relation of risk-premia to investment maturities present confounding evidence: Binsbergen et al. (2012) find
that claims to long-maturity dividends carry lower risk premia; and Giglio et al. (2015) and Weber (2018)
find negative relation of risk premia and duration of risky cash flows.
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3 imply an almost exact inverse relationship between these parameters.17 As is well known,

in the case of additive power expected utility, there is an exact inverse relationship between

risk aversion and the IES. There exist other instances in the literature where estimates of

risk aversion and IES are close to being in an inverse relationship (e.g., van Binsbergen

et al. (2008)), although in different regions of the parameter space.18 In a related vein,

the estimation results imply that consumer risk preferences are not statistically different

from a expected power utility specification, similar to Epstein and Zin (1991)– albeit with

a different relative risk aversion coeffi cient.

Turning to the parameters relating to the CES product variety preferences, the estimates

of the product elasticity of substitution (ES, σ) for the manufactured consumer goods sector

cluster around 2. These estimates significantly exceed 1, which is the requirement of the

theoretical model. The estimation of the CES in Dixit and Stiglitz (1977) preferences at the

industry level is of long-standing interest in the applied economics literature. Broda and

Weinstein (2006) use import data on product varieties from 1972-1988 and 1990-2001 and

report median ES estimates for differentiated goods (at the four-digit Standard International

Trade Classification (SITC) level) of 2.1 for 1990-2001 (and 2.5 for 19972-1988). Hottman

and Monarch (2018) use import data from 1998 to 2014 and report the median ES for

tradable consumer goods (at the four digit NAICS level) of 2.75. Thus, our estimates appear

reasonably consistent with estimates of sectoral ES in the literature.

In sum, the results in Table 3 support the view that using a system of moment conditions

and IVs– with both industry production and asset returns, along with market returns– lead

to strong identification of the parameters related to consumer preferences in a general equilib-

rium model with product variety. This view is based on the uniform statistical significance of

the point estimates for the entire parameter vector in Table 3, their low dispersion (compared

with Table 2 for (γ, η)), and economic appeal.

17In the case of specification Π3, the risk aversion is strictly greater than the inverse of the IES.
18van Binsbergen et al. (2008) estimate the IES as 0.06 and risk aversion as 46 (whose inverse is 0.02).
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The strong identification of consumer preference parameters with economically reasonable

values in Table 3 is in striking contrast to the estimation results in Table 2. Of course, there

are several differences in the empirical tests underlying the results in Table 2 and Table

3. These include the expansion of preference parameters to include the ES, utilization of

industry-level (real) Euler conditions for investment and production, and use of industry

production data in the IVs. It is therefore of substantial interest to examine the relative

contributions of these differences for the estimation performance in Table 3. Moreover, the

estimates in Table 3 suggest that the model (in Section 2) is consistent with the industry-

level equity returns in the data with reasonable values of risk aversion, IES, and ES. But

it would also be useful to verify this quantitatively. Our analysis in the next two sections

pursues these issues.

4 Euler Conditions, IVs and Estimation Effi ciency

The estimation in Table 3 differs from the one using only asset returns– displayed in Table

2– in three ways. First, we explicitly incorporate consumer preferences over product variety

through the ES, σ, in the estimation. Second, we add industry-level real moment conditions

(3.1) and (3.2). Third, we use industry production data in the IVs, which helps exploit

their stronger own- and cross-autocorrelations as seen in Table 1. It is useful to examine the

effects of these three changes in enhancing the identification in Table 3 (relative to Table 2).

4.1 Effects of product variety and industry Euler conditions

We first examine whether the improved estimation of risk aversion and IES in Table 3 is an

artefact of raising the number of estimated parameters from 2, i.e., (γ, η), to 3, i.e., (γ, η, σ).

The alternative hypothesis is that incorporating preferences over product variety (ES) in the

canonical asset pricing model adds structural restrictions– i.e., derived from the equilibrium
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conditions of our model– that enhance identification of all the parameters of interest, in

particular, (γ, η). To disentangle these two hypotheses, we undertake estimation by using

the moment conditions and IVs in Π1, but fixing the value of σ = 2.03, consistent with the

estimate in Table 3. As seen in the first row of Table 4, we find reliable estimates of (γ, η)

essentially identical to that in Table 3 (for Π1). We conclude that it is the incorporation of

preferences over product variety, rather than the higher number of estimated parameters per

se, that improves identification of risk aversion and IES.

Turning to the role of the moment conditions derived from the industry equilibrium, the

improved identification or estimation effi ciency in Table 3 could arise from the use of one or

both of the Euler conditions. Hence, it is useful to examine the relative roles of the intertem-

poral Euler condition for investment and the intratemporal materials input Euler condition.

To facilitate comparison with Table 3, we maintain the IVs for moment conditions on returns

given in Π1. (We label the specifications with “bars”to reflect constrained estimation.) We

first use only the investment Euler condition along with the asset returns moment conditions

and IVs in Π1. We are unable to reliably estimate all three parameters (γ, η, σ). However,

using σ = 2.03 and estimating only (γ, η) generates estimates similar to Table 3, as seen in

the second row of Table 4. Comparing these estimates with Table 2 (where we used only

the asset returns moment condition), we conclude that adding the intertemporal investment

Euler equation significantly enhances identification of risk aversion and IES conditional on

knowledge of σ.

Next, the third row of Table 4 presents estimation results when we include the material

optimality condition but exclude the investment Euler condition. In this case, we obtain a

reliable estimate of ES, which is consistent with the estimation in Table 3. However, the

risk aversion and IES estimates are highly distorted relative to the estimates in Table 3– the

former being too high and the latter being too low, and there is also a significant decline in

estimation precision of θ. Hence, we conclude that estimation effi ciency and/or the economic
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appeal of estimates appear to significantly deteriorate if either of the two product market

conditions– the investment Euler condition and the materials input optimality condition–

are excluded.

The fourth row of Table 4 shows estimates from utilizing the materials input and in-

vestment optimality conditions, while excluding the asset returns moment condition. The

estimates are significant and close to the estimates in Table 3. However, the risk aversion

estimate is lower than the robust estimate in Table 3. These results are consistent with

the view that the production data– that is, capital investment and materials input data–

serve as strong IVs and significantly enhance identification of parameters governing consumer

preferences.

In sum, explicitly modeling consumer preferences over product variety and utilizing both

the intertemporal and intratemporal industry production Euler conditions– as well as the

strong industry-based IVs– are together required for enhancing the estimation precision

and economic appeal of parameters governing consumer preferences in a generalized setting

with product variety. We also show that adding lagged industry and market returns as

IVs further improves estimation effi ciency. Our results complement findings in other ar-

eas of finance where richer parameterization of consumer preferences and using novel data

improves identification. For example, Huang and Shaliastovich (2014) show that using re-

cursive preferences– in particular, imposing parameteric restrictions for early resolution of

uncertainty– and using equity options data helps identification of objective probabilities and

risk adjustments.

4.2 Effects of industry production data in IVs

We examine next the effects using industry production data in IVs. To do so, we replace the

production-data-based IVs in Table 3 with aggregate IVs utilizing aggregate per capita con-
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sumption growth. That is, in place of industry-level investment and materials expenditures

data that we utilized in IVs in the estimation in Table 3, we use consumption growth. The

lag structure for consumption growth in the IVs is the same as the lag structure for industry

data in the original (Table 3) IVs. We label the new IVs as Π′j, j = 1, ...5, for convenience.

The results are displayed in Table 5. Comparing the results in Table 5 with those in

Table 3, we find that the estimates for risk aversion and IES are no longer statistically

significant. While the risk aversion levels are reasonable, the estimates for IES are not

appealing, essentially being 0. On the other hand, the estimates of ES, σ, are essentially

the same as in Table 2 and statistically significant. We also note that the p-value for the

J statistics are larger for each specification in Table 5 compared with the corresponding

specification in Table 3. Overall, we conclude that IVs using industry production data

significantly improve estimation effi ciency relative to IVs using aggregate consumption data.

The foregoing analysis suggests that incorporating consumer preferences over product

variety– parameterized in our model by the ES (σ)– appears to add structural restrictions

to the canonical asset pricing model, which helps explain the strong identification of risk

aversion and IES (along with the ES) seen in Table 3. More precisely, if the ES significantly

affects equilibrium risk premium, then making it explicit in the equilibrium conditions (2.18)-

(2.21) imposes additional structural restrictions on equilibrium returns relative to models

where the role of the ES is suppressed. It is, thus, important to examine whether and how

the ES affects equilibrium risk premium. In particular, the moderate risk aversion and low

IES estimates in Section 3 suggest that our model can generate sizeable industry-level risk

premiums around the (γ, η, σ) estimates in Table 3, and it would be useful to verify this

quantitatively.

More generally, the relation of consumer preferences for product variety and equity risk

premiums is of independent interest. In the next section, we quantitatively examine relation

of the product elasticity of substitution (i.e., ES) and the equity risk premium.
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5 Preferences for Product Variety and Risk Premium

There is an intuition that industries whose products are characterized by low elasticity

of substitution with alternative goods– for example, luxury or high product differentiation

goods– will have profits that are more cyclically sensitive relative to industries with high

elasticity of substitution, such as commodities. Because greater procyclicality in profits earns

higher risk premium, other things being equal, it follows that there should be a negative

relation of elasticity of substitution (ES) and ERP. In this section, we utilize our model to

quantitatively assess this hypothesis. In addition, we explore the interaction of ES with risk

aversion, capital productivity, and adjustment costs in terms of the effects on ERP.

5.1 Analytic Approximations

Our analysis proceeds through loglinear approximations around product and asset market

equilibrium of our model in deterministic steady state (King et al. (1988), Uhlig (1995)). We

apply this approach industry equilibria, along the lines specified in Equations (2.18)-(2.21),

where the aggregate income and price index (Wt, Pt) as well as the (industry) productivity

and input price indices (At, Xt, Zt) are taken as state variables.

The details of the analytic approximations, including the industry and asset market equi-

libria in the steady state, are given in the Online Appendix. Because the only exogenous

shocks to our economy, namely, the sectoral productivity shocks follow a first order log-

autoregressive process (see Equation (2.9)), we will solve the model with loglinear approxi-

mations of industry and asset markets’equilibrium under the assumption that the industry

stochastic state variables (Wt, Pt, At, Xt, Zt) follow a log-autoregressive system with multi-

variate normal i.i.d correlated shocks. The model’s solution will then give, at any t, the

sector capital stock Kt+1, product prices pt, the log of dividends dt, as well as the log of the

SDF mt and log of equity prices st as linear combinations of the industry’s state variables.
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Specifically, using the notation: wt ≡ log(Wt), πt ≡ log(Pt), at = log(At), xt = log(Xt),

zt = log(Zt), we let µt ≡ (wt, πt, at, xt, zt)
′, ρ = (ρw, ρπ, ρa, ρx, ρz), 0 ≤ ρ ≤ 1, and εt =

(εwt,επt,εat,, εxt,εzt)
′. Then the log-state vector µt follows the recursive law of motion

µt+1 = ρ′µt + εt+1. (5.1)

Now, µt includes two aggregate quantities– wt and πt– that are common across industries–

and three industry-specific quantities: at, xt and zt. Correspondingly, the shock vector εt

is also composed of aggregate and industry-specific shocks. In particular, εt are multi-

variate normal mean zero variables with the variance-covariance matrix Φ =
[
Φij

]
, where

Cov(εwt,εwt,) = Φ2
w, Cov(επt,επt,) = Φ2

π and Cov(εwt,επt,) = Φwπ are common across , while

Cov(εwt,εat) = Φaw etc. are specific to the industry. Under the maintained assumption of a

stationary variance-covariance matrix of the aggregate and industry shocks, it is shown in

the Online appendix that the unconditional industry ERP can be written as:

E[rt+1−rft+1] = βwΦ2
w+βπΦ2

π+βwπΦwπ+βawΦaw+βxwΦxw+βzwΦzw+βaπΦaπ+βxπΦxπ+βzπΦzπ.

(5.2)

In (5.2), βw, βw and βwπ represent the risk loadings of the representative firm in sector j to

aggregate shocks, that is, exposure to income and price index shocks. And βaw, βxw, βxπ, βzw,

and βzπ represent the industry’s risk sensitivities to industry-specific shocks due to the covari-

ation between shocks to industry productivity and intermediate cost indices with aggregate

shocks. The specification of the loadings, in terms of the parameters of the equilibrium (log)

dividend and stock price functions are provided in the Online appendix.

The ERP representation in (5.2) differs from the received literature in two principal

ways. First, unlike single consumption good macrofinance models– both in exchange and

production economies– our model allows cross-sectional variation across industries. Second,

and distinct from the production-based asset pricing literature, the “real side”of our model

30



specifies the contribution to equilibrium ERP due to the covariation between industry-specific

(productivity and materials costs) shocks and aggregate shocks. Furthermore, because of

their independent effects on product demand, the aggregate consumption basket is not a

suffi cient statistic for aggregate income and price index with endogenous production. To

explicate, note that consumer optimum with CES preferences implies that Ct = Wt

Pt
, where

Ct is the aggregate consumption basket, Wt is the aggregate income and Pt is the (CES)

aggregate price index.19 In particular, with output Yt, the inverse demand function ωt(Yt) is

proportional to (Wt/Pt)
1/σ Pt (Yt)

−1/σ, where σ is the ES. Hence, the industry demand curve

shifts outward with exogenous increases in aggregate income or the price index– that is, Ct

does not subsume the effects of the aggregate risk factors on endogenous production– so that

Wt and Pt operate as separate aggregate risk factors. Hence, the risk premium is affected

by volatilities of aggregate income and price index, as well as their covariation.

Finally, the risk premium is also affected by the covariation between sectoral productiv-

ity shocks and intermediate goods prices with the aggregate income and price index. For

example, a positive covariation between sectoral input prices and the aggregate price index

(Pt) has a positive risk premium because higher production and investment costs– and hence

lower cash flows– tend to coincide with low higher real consumption Wt

Pt
and higher stochas-

tic discount factor (SDF). With appropriate calibration, (5.2) allows the computation of the

unconditional ERP. We now turn to these computations.

5.2 Calibration

The asset pricing literature highlights the role of durability in expected returns (Yogo (2008),

Gomes, Kogan and Yogo (2009)). We therefore focus on the consumer durable (manufac-

19Consistent with the CES model, we derive the CES price index as Pt = Wt/Ct, using NIPA income and
consumption data. Hence, by construction, the variance and covariance of log changes in aggregate income
and price index utilized in our analysis imply the (annual) volatility of log per capita consumption growth
in the data. In sum, our results are not driven by “large”values of implied consumption growth volatility.
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tured) goods sector to calibrate our quantitative analysis, which requires parameterization

for aggregate quantities (which are common across sectors), as well as the sector-specific

parameters. As in our estimation analysis in Section 3, we use per-capita national income

and consumption expenditures from FRED.

The (annual) volatility of per capita national income shocks (Φw) in our sample pe-

riod is 2.47% , while the volatility of the shocks to log aggregate price index (Φπ) is very

low, that is, 0.76%; and the covariance Φwπ is even lower (4.8 e-05). Using the relation

logCt = logWt − logPt, we obtain (annual) volatility of log consumption growth as 2.39%.

By construction (since P is forced to equal W/C), this volatility equals (up to rounding)

the annual volatility of per-capita consumption in our sample period. We also derive the

persistence parameters (in levels) for the aggregate variables, i.e., (ρw, ρπ), from the data.

The sector-specific parameterization is based on the NBER-CES data. In particular, we

calibrate from the production data the covariances between the industry and aggregate fac-

tors (Φ·w,Φ·π) and the persistence parameters for industry productivity, materials deflator,

and investment deflator, (ρa, ρx, ρz). This calibration is specified in Table 5. The covari-

ance between aggregate and industry factors are very small. And the high persistence in

the macroeconomic variables is consistent with the RBC literature ((Prescott (1986), Milani

(2007)), while the persistence of industry productivity is consistent with the asset pricing

literature (Kaltenbrunner and Lochstoer (2010), Papanikolaou (2011)).

We use other model parameterization consistent with our empirical estimation in Section

3. Specifically, α = 0.97, φ = 0.35, δ = 0.2, and υ = 0.1. The parameterization of production

elasticities (ψK and ψH) for the consumer durable goods sector follows a procedure similar to

that described in Section 3. We then analyze the relation of consumer preference parameters

(γ, η, σ) and the ERP around our structural estimates from our model using GMM (see

Section 3). Specifically, as the baseline parameterization, we take risk aversion (γ) to be 5;

the IES (η−1) as 0.19; and the intratemporal ES (σ) as 2.03. Following Feenstra (1994) and
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Broda and Weinstein (2006), the interpretation of this sector-specific ES in our setting is the

elasticity of substitution between durable and nondurable consumer manufactured goods.20

Table 5 also records the values of these parameters for convenience.

In the usual fashion, we take the steady state value of per capita income W̄ and aggregate

(CES) price index P̄ as their sample means. By construction of the Pt time-series, the implied

steady state consumption-to-income ratio matches the sample mean and the steady-state

consumption level is also close to its sample mean. Similarly, the steady state values Ā, X̄,

and Z̄ are calibrated so that the model’s steady state per capita output, materials inputs,

and capital stock match their corresponding sample means. The procedure for computing

the long-linearized SDF through simulations is given in the Online appendix (Section C.1).

5.3 Asset Pricing Implications

Figure 1 displays surface plots of the effects on ERP of bivariate variations in the ES (σ) and

risk aversion (γ). The figure confirms that, for a fixed σ, ERP is positively related to risk

aversion. But the ERP is negatively related to the ES. In the CES setting (see (2.4)), the

sectoral ES measures the demand price elasticity of the industry good; hence, the graphical

analysis in Figure 1 indicates a negative relation of ERP and price elasticity.

Conceptually and empirically, goods with low product differentiation, such as commodi-

ties and basic consumption goods, have greater demand price elasticity compared with highly

differentiated goods, such as luxury goods (Berry, Levinsohn and Pakes (1995), Broda and

Weinstein (2006)). As we mentioned already, high price-cost markup differentiated goods

are exposed to much greater cyclical risk compared to basic consumption goods. Risk averse

20This approach is based on extending the basic CES basket (2.4) specification to allow for nonsymmetric
or good-specific ES (e.g., Broda and Weinstein (2006)). Using this more flexible specification does not change
the theoretical characterization of the equilibrium and, hence, the sectoral asset pricing implications. For
notational parsimony, we continue to use σ to denote the sectoral ES in the manufactured consumer durable
goods sector.
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investors should therefore demand higher compensation for being exposed to the risk of

greater (negative) covariance of the SDF with the returns of differentiated goods industries,

compared with low differentiation industries. The graphical analysis in Figure 1 is consistent

with this intuition.

Figure 1 also shows interaction effects of risk aversion and ES on the ERP, which are

in line with the intuition given above. In particular, the negative relation of ERP and ES

increases in magnitude with risk aversion. For example, the ERP gradient with respect to σ

(from σ = 3 to 1.5) is 1.3 when γ = 5, while this gradient is 2.6 when the γ = 10. Because

of the interaction effects of σ and γ, ERP can be sizeable for γ around 10 and σ around 1.5

(around 4.67%); and21 conversely the ERP can be relatively small for risk aversion of 10 for

high demand elasticity goods (around 2.05%).22

Because of the prominent role of the IES in asset pricing with Epstein and Zin (1989)

preferences, it is also of interest to examine the interaction of the intratemporal ES between

products and the IES (η−1). This graphical analysis is presented in Figure 2. ERP is neg-

atively related to IES (for a given σ) and, of course, we see the negative relation of σ and

ERP (for a given IES). Moreover, the negative effect of ES and ERP increases in magnitude

as IES falls. For example, the ERP gradient with respect to σ (from σ = 3 to 1.5) is 1.25

when IES is 0.4 (η = 2.5), while this gradient is 1.4 when the IES is 0.1 (η = 10). Overall,

the effects of IES are opposite of the effects of risk aversion seen in Figure 1. There, ERP

is positively related to risk aversion and the negative effect of ES on ERP is increases with

risk aversion. This is consistent with the estimation results in Section 3 where we find an

inverse relation of risk aversion and IES.

It is also apparent that our general equilibrium model with multiple consumption goods

(or product variety), capital investment and production generates sizeable equity risk-premiums

21As a benchmark, the annual ERP for the consumer durable sector in our sample period is 6.71%.
22As a benchmark, the mean annualized equity risk-premium for the durable consumption goods manu-

facturing during our sample period is 6.71%.
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with reasonable calibration of parameters governing consumption preferences, as well as

production-related parameters consistent with the data and/or the literature. This analysis

is thus consistent with the estimates of consumer preferences parameters in Table 3. The

sizeable equity risk-premiums generated by our model for reasonable parameterization com-

plement the existing literature on multisector models with investment and production in the

presence of capital adjustment costs (e.g., Papanikolaou (2011)).

Finally,for simplicity, we do not incorporate non-dividend income for the CI in the

model. An exogenous stochastic non-dividend income component will not significantly af-

fect the results since the analytic approximations above are based on a general first order

log-autoregressive process for consumer wealth and we calibrate the model with per capita

income in the data. Allowing endogenous labor income with leisure as a component of

consumer preferences and labor as a factor of production will not significantly affect the

endogenous risk factors, but will affect the factor loadings.

6 Summary and Conclusions

Estimating preference parameters of the representative agent using GMM and Euler condi-

tions from asset pricing models– such as the CCAPM– is of long-standing interest in finan-

cial economics. The received literature typically uses lagged consumption and (aggregate)

returns as instrumental variables (IVs). But these IVs are weak because of low autocorrela-

tion in returns as well as low cross-autocorrelations in consumption and returns; hence, these

tests typically suffer from a weak identification problem. In this paper, we present a novel

estimation approach building on the view that value-maximization by firms in multisector

settings implies that consumer preference parameters are reflected in industry-level produc-

tion information. Developing a dynamic multisectoral production-based general equilibrium

asset pricing model where the representative consumer is endowed with recursive CES pref-
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erences on baskets of goods and firms choose material inputs and capital investment, we use

real restrictions from and U.S. manufacturing data for GMM estimation of risk aversion,

IES, and ES. Industry investment and production data provide strong instruments due to

high autocorrelations. We obtain economically appealing, effi cient estimates of risk-aversion,

IES, and ES. In contrast, we find weak identification when we utilize only standard asset

market restrictions and aggregate returns and consumption.

Our analysis is consistent with the view that incorporating preferences over product

variety (parameterized by the ES) in the canonical asset pricing model adds structural re-

strictions that enhance identification of all the parameters of interest, in particular, risk

aversion and IES. Furthermore, tests of subsets of moment conditions of the model indicate

that Euler conditions from the industry production equilibrium and industry IVs are critical

for identification. In particular, the intertemporal investment Euler condition contributes

significantly to the identification of risk aversion and IES, whereas the intratemporal mate-

rials input condition contributes significantly to the identification of ES. Consequently, both

the real restrictions contribute to the identification of risk aversion, IES, and ES.

The structural restriction added by considering preferences over product variety is due

to the effect of ES on the risk premium. There is a strong economic intuition that, at the

industry level, ERP should ceteris paribus be positively related to product differentiation.

This is because commodities and basic consumption goods, with low product differentiation,

exhibit small cyclical variation in price-cost markups and, hence, profits. In contrast, highly

differentiated goods have relatively large cyclical variation in profit margins, amplifying the

negative covariation between the stochastic discount factor and returns. Because product

demand elasticity is positively related to the ES at consumer optimum, this argument pre-

dicts a negative relation of ES and ERP. Our quantitative analysis verifies that ES and ERP

are negatively related.

The framework developed in this paper can be extended in several directions in future
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research. We have focused on the asset pricing implications and estimation of consumer

goods sectors. A natural extension of our study is to examine asset pricing in intermediate

goods industries. Furthermore, for analytic tractability, we have not considered endogenous

labor income in this study; a more realistic model with endogenous labor input in production,

with attendant labor income for consumers, would be a natural extension in future research.

The production environment can also be enhanced by allowing innovation (or growth) in

industry productivity and allowing entry and exit.

References

Ait-Sahalia, Y., J. Parker and M. Yogo, 2004, Luxury goods and the equity premium, Journal of

Finance 59, 2959-3004.

Andrews, D.W., 1999, Consistent moment selection procedures for generalized method of moments

estimation, Econometrica 67, 543-564.

Arrow, K. J., and F. Hahn, 1971, General competitive analysis, Holden-Day, San Francisco.

Bansal, R., and A. Yaron, 2004, Risks for the long run: A potential resolution of asset pricing

puzzles, Journal of Finance 59, 1481-1509.

Berle, A., and G. Means, 1932, The modern corporation and private property, Macmillan, New

York.

Berry, S., J. Levinsohn, and A. Pakes, 1995, Automobile prices in market equilibrium, Econometrica

63, 841-890.

Best, M., J. Cloyne, E. Ilzetski, and H. Kleven, 2020, Estimating the elasticity of intertemporal

substitution using mortgage notches, Review of Economic Studies 87, 656-690.

Broda, C., and D. Weinstein, 2006, Globalization and the gains from variety, Quarterly Journal of

Economics 121, 541-86.

Caballero, R., and E. Engel,1999, Explaining investment dynamics in U.S. manufacturing: A gen-

37



eralized (S, s) approach, Econometrica 67, 783-826.

Cochrane, J., 1991, Production-based asset pricing and the link between stock returns and economic

fluctuations, Journal of Finance 46, 209—237.

Cooper, R., and J. Haltiwanger, 2006, On the nature of capital adjustment costs, Review of Eco-

nomic Studies 73, 611-633.

Croce, M., 2014, Long-run productivity risk: A new hope for production-based asset pricing?,

Journal of Monetary Economics 66, 13-31.

Dixit, A., and J. Stiglitz, 1977, Monopolistic competition and optimum product diversity, American

Economic Review 67, 297-308.

Doshi, H., and P. Kumar, 2025, Capital investment, equity returns, and aggregate dynamics in

oligopolistic production economies, Review of Financial Studies 38, 192-234.

Du, D., 2011, General equilibrium pricing of options with habit formation and event risks, Journal

of Financial Economics 99, 400-426.

Eberly, J., S. Rebelo, and N. Vincent, 2012, What explains the lagged investment effect?, Journal

of Monetary Economics 59, 370-380.

Epstein, L., and S. Zin, 1989, Substitution, risk aversion, and the temporal behavior of consumption

and asset returns: A theoretical framework, Econometrica 57, 937-969.

Epstein, L., and S. Zin, 1991, Substitution, risk aversion, and the temporal behavior of consumption

and asset returns: An empirical analysis, Journal of Political Economy 99, 263-286.

Fama, E., and K. French, 1997, Industry costs of equity, Journal of Financial Economics 43, 153—

193.

Feenstra, R., 1994, New product varieties and the measurement of international prices, American

Economic Review 84, 157-177.

38



Gellatly, G., M. Tanguay, and J. Baldwin, 2007, Depreciation rates for the productivity accounts,

Canadian Productivity Review, No. 15-206 XIE.

Gomme, P., and P. Rupert, 2007, Theory, measurement and calibration of macroeconomic models,

Journal of Monetary Economics 54, 460-497.

Gomes, J., L. Kogan and M. Yogo, 2009, Durability of output and expected stock returns, Journal

of Political Economy 117, 941-986.

Hall, R., 1988, Intertemporal substitution in consumption, Journal of Political Economics 96, 339-

357.

Hall, R., 2004, Measuring factor adjustment costs, Quarterly Journal of Economics 119, 899-927.

Han, C., and P. C. B. Phillips, 2006, GMM with many moment conditions, Econometrica 74,

147-192.

Hansen, L.P., and K. Singleton, 1982, Generalized instrumental variables estimation of nonlinear

rational expectations models, Econometrica 50, 1269-1286.

Hansen, L.P., and K. Singleton, 1983, Stochastic consumption, risk aversion, and the temporal

behavior of asset returns, Journal of Political Economy 91, 249-265.

Hottman, C., and R. Monarch, 2018, Estimating unequal gains across U.S. consumers with supplier

trade data, Working paper, Center of Economic Studies, U.S. Census Bureau.

Horvath, M., 2000, Sectoral shocks and aggregate fluctuations, Journal of Monetary Economics 45,

69-106.

Huang, D., and I. Shaliastovich, 2014, Risk adjustment and the temporal resolution of uncertainty:

Evidence from options markets, Working Paper, Wharton School, University of Pennsylvania.

Jensen, M., and W. Meckling, 1976, Theory of the firm: Managerial behavior, agency costs and

ownership structure, Journal of Financial Economics 4, 305-360.

39



Jermann, U., 1998. Asset pricing in production economies, Journal of Monetary Economics 41,

257—275.

Kaltenbrunner, G., and L. Lochstoer, 2010, Long-run risk through consumption smoothing, Review

of Financial Studies 23, 3190-3224.

King, R., C. Plosser, S. Rebelo, 1988, Production, growth and business cycles I. The basic neoclas-

sical model, Journal of Monetary Economics 21, 195-232.

Kiyotaki, N., 1988, Multiple expectational equilibria under monopolistic competition, Quarterly

Journal of Economics 103, 695-713.

Kogan, L., and D. Papanikolaou, 2013, Firm characteristics and stock returns: The role of investment-

specific shocks, Review of Financial Studies 26, 2718-2759.

Kogan, L., and D. Papanikolaou, 2014, Growth opportunities, technology shocks, and asset prices,

Journal of Finance 69, 675-718.

Kroencke, T., 2017, Asset pricing with garbage, Journal of Finance 72, 47-98.

Kydland, F., and E. Prescott, 1982, Time to build and aggregate fluctuations, Econometrica 50,

1345-1370.

Mehra, R., and E. Prescott, 1985, The equity premium: A puzzle, Journal of Monetary Economics

15, 145-161.

Milani, F., 2007, Expectations, learning, and macroeconomic persistence, Journal of Monetary

Economics 54, 2065-2082.

Newey, W., and F. Windmeijer, 2009, GMM Estimation with many weak moment conditions,

Econometrica 77, 687-719.

Oliner, S., 1989, The formation of private business capital: trends, recent development, and mea-

surement issues, Federal Reserve Bulletin 75, 771-783.

40



Papanikolaou, D., 2011, Investment shocks and asset prices, Journal of Political Economy 119,

639-685.

Parker, J., and C. Julliard, 2005, Consumption risk and the cross section of expected returns,

Journal of Political Economy 113, 185-222.

Prescott, E., 1986, Theory ahead of business cycle measurement, Carnegie-Rochester Conference

Series on Public Policy 25:11-44.

Redding, S., and D. Weinstein, 2020, Measuring aggregate price indexes with taste shocks: Theory

and evidence for CES preferences, Quarterly Journal of Economics 135, 503-560.

Savov, A., 2011, Asset pricing with garbage, Journal of Finance 66, 171-201.

Stock, J., and J. Wright, 2000, GMM with weak identification, Econometrica 68, 1055-1096.

Uhlig, H., 1995, A toolkit for analyzing nonlinear stochastic dynamic models easily, Discussion

Paper101, Federal Reserve Bank of Minneapolis.

Yogo, M., 2008, A consumption-based explanation of expected stock returns, Journal of Finance

61, 539-580.

41



Table 1. Matrix of Autocorrelation Coeffi cients

Variables GC
t GC

t−1 GC
t−2 R̃Σ

t R̃Σ
t−1 R̃Σ

t−2 R̃j
t R̃j

t−1 R̃j
t−2

GC
t 1.000

GC
t−1 0.910 1.000

GC
t−2 0.780 0.905 1.000
R̃Σ
t 0.104 -0.072 -0.025 1.000

R̃Σ
t−1 0.115 0.121 -0.062 -0.078 1.000

R̃Σ
t−2 -0.084 0.100 0.108 -0.228 -0.077 1.000
R̃j
t 0.185 -0.152 0.030 0.751 -0.216 -0.415 1.000

R̃j
t−1 0.217 0.217 0.011 -0.135 0.755 -0.208 -0.057 1.000

R̃j
t−2 -0.002 0.194 0.191 -0.205 -0.134 0.756 -0.338 -0.034 1.000

B: Industry Production Variables

Variables It It−1 It−2 Ht Ht−1 Ht−2

It 1.000
It−1 0.971 1.000
It−2 0.934 0.972 1.000
Ht 0.972 0.955 0.941 1.000
Ht−1 0.964 0.973 0.984 0.990 1.000
Ht−2 0.943 0.966 0.973 0.979 0.990 1.000

Notes to Table: This table uses annual data from 1958 to 2016. Panel A presents own and cross-
autocorrelations of yearly growth rates of U.S. per capita consumption growth GC

t , annualized
aggregate (market) ERP R̃Σ

t = RΣ
t − Rft, where R

Σ
t is the value-weighted CRSP return and

Rft is the annual risk free rate, and annualized ERP R̃jt from value-weighted portfolio of con-
sumer goods manufacturing industries in the NBER-CES database. Panel B presents own and
cross-autocorrelations of mean annual industry investment (I), materials input (H), and average
productivity (A) using the NBER-CES manufacturing database.
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Table 2. Estimation using only asset market restrictions

IV θ̂(γ̂) SE(θ̂) η̂−1 SE(η̂) J DF p-Value

ΓΣ
−2 -0.002 (68) 1.730 0.00 2.890e+07 1.07 1 0.30

ΓΣ
nl -0.49 (56) 0.783 - 0.01 196.272 0.85 4 0.93

Γj−2 -0.006 (51) 1.624 0.00 2.206e+6 1.31 3 0.73

Γjnl -0.662 (47) 0.914 -0.01 106.019 1.69 4 0.79

ΓΣ,j
−1 2.00 (113) 1.12 0.02 56.298 0.015 1 0.90

Notes to Table: This table presents the point estimates, standard errors, and J statistics from two
step GMM estimation (with heteroskedasticity- and autocorrelation-consistent inference) of risk
aversion (γ̂) and the intertemporal elasticity of substitution of consumption (η̂−1) from moment
restrictions derived from the asset market equilibrium condition, using data on aggregate (R̃Σ

t )
and manufacturing industry (R̃jt) equity risk premium. The sample period is 1958-2016 (annual)
and the data are described in the text. The p-value of J statistics are calculated with Chi-square
distribution with degrees of freedom DF. Statistical significance at 10%, 5%, and 1% levels are
denoted by ∗,∗∗ , and ∗∗∗, respectively.
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Table 3. Estimation using production and asset market restrictions

IV θ̂(γ̂) SE(θ̂) η̂−1 SE(η̂) σ̂ SE(σ̂) χ2 DF p-Value

Π1 0.879 (5)∗∗∗ 0.150 0.19∗∗∗ 0.626 2.03∗∗∗ 0.022 8.155 13 0.833

Π2 0.865 (5)∗∗∗ 0.185 0.19∗∗∗ 0.992 2.02∗∗∗ 0.023 6.049 11 0.870

Π3 0.864 (6)∗∗∗ 0.188 0.19∗∗∗ 1.1540 2.02∗∗∗ 0.023 6.048 10 0.811

Π4 0.861 (5)∗∗∗ 0.190 0.19∗∗∗ 1.059 2.02∗∗∗ 0.030 5.979 10 0.817

Π5 0.871 (5)∗∗∗ 0.182 0.19∗∗∗ 0.922 2.02∗∗∗ 0.021 6.074 12 0.912

Notes to Table: This table presents the point estimates, standard errors, and J statistics from two
step GMM estimation (with heteroskedasticity- and autocorrelation-consistent inference) of risk
aversion (γ̂), the intertemporal elasticity of substitution of consumption (η̂−1), and the intratem-
poral elasticity of substitution (σ̂) from data on U.S. consumer goods manufacturing industries.
The sample period is 1958-2016 (annual) and data sources are described in text. The moment re-
strictions are derived from the Euler conditions for capital investment and materials input, as well
as the asset markets considered in Table 2. The other parameters used in the moment conditions
are set as α = 0.97, φ = 0.35, ψH = 0.75, ψK = 0.25, υ = 0.1, and δ = 0.2. The sample
period is 1958-2016 (annual) and data sources are described in text. The p-value of J statistics
are calculated with Chi-square distribution with degrees of freedom DF. Statistical significance at
10%, 5%, and 1% levels are denoted by ∗,∗∗ , and ∗∗∗, respectively.
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Table 5. Role of production IVs

IV θ̂(γ̂) SE(θ̂) η̂−1 SE(η̂) σ̂ SE(σ̂) χ2 DF p-Value

Π′1 0.003 (4) 0.189 0.001 5.949e+4 1.97∗∗∗ 0.022 4.506 13 0.984

Π′2 0.001 (3) 0.305 0.00 5.064e+5 1.96∗∗∗ 0.0214 4.473 10 0.924

Π′3 0.001 (3) 0.204 0.00 2.225e+5 1.97∗∗∗ 0.022 4.408 10 0.927

Π′4 0.002 (3) 0.182 0.001 1.109e+5 1.97∗∗∗ 0.020 4.739 10 0.907

Π′5 0.003 (3) 0.188 0.001 4.257e+4 1.96∗∗∗ 0.013 4.566 12 0.971

Notes to Table: This table presents the point estimates, standard errors, and J statistics from two
step GMM estimation (with heteroskedasticity- and autocorrelation-consistent inference) of risk
aversion (γ̂), the intertemporal elasticity of substitution of consumption (η̂−1), and the intratem-
poral elasticity of substitution (σ̂) from data on U.S. consumer goods manufacturing industries.
The sample period is 1958-2016 (annual) and data sources are described in text. The combinations
of moment restrictions are derived from the Euler conditions for capital investment and materials
inputs, and asset markets, as considered in Table 3. To construct instrumental variables in Table 5,
we start with instrumental variables Π1−Π5 in Table 3 and replace industry production variables
with aggregate consumption growth resulting in (Π′1 − Π′5). The other parameters used in the
moment conditions are set as α = 0.97, φ = 0.35, ψH = 0.75, ψK = 0.25, υ = 0.1, and δ = 0.2.
The p-value of J statistics are calculated with Chi-square distribution with degrees of freedom DF.
Statistical significance at 10%, 5%, and 1% levels are denoted by ∗,∗∗ , and ∗∗∗, respectively.
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Figure 1: Product elasticity of substitution (σ), risk aversion (γ), and equity
risk premium

Notes to Figure: This figure graphically displays, through three-dimensional plots, the relation of
equilibrium equity risk premium for the consumer durables manufacturing industry, with various
combinations of consumer preference parameters: risk aversion (γ), (inverse of) intertemporal
elasticity of substitution (η) and intratemporal elasticity of substitution (σ). The sample period is
1958-2016 (annual) and data sources are described in text.
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Figure 2: Product elasticity of substitution (σ), intertemporal elasticity of
substitution (η−1), and equity risk premium

Notes to Figure: This figure graphically displays, through three-dimensional plots, the relation of
equilibrium equity risk premium for the consumer durables manufacturing industry, with various
combinations of consumer preference parameters: risk aversion (γ), (inverse of) intertemporal
elasticity of substitution (η) and intratemporal elasticity of substitution (σ). The sample period is
1958-2016 (annual) and data sources are described in text.
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Online Appendix

A.1 Derivation of Optimal Consumption and Portfolio Policies

The representative consumer-investor’s (CI’s) optimization problem at any t is to

max
ct,qt+1

Ut, s.t., (A1.1)

pt · ct ≤ qt · (dt + st)− qt+1 · st ≡ Wt. (A1.2)

The Lagrangian for with respect to (A1.1)-(A1.2) is

max
ct,qt+1

Ut + χt [Wt − pt · ct] , Wt = qt · (dt + st)− qt+1 · st, (A1.3)

where Lagrange multiplier for the budget constraint χt > 0 since preferences are strictly
increasing in consumption and the budget constraint (A1.2) will be binding in optimum.
Using concavity of the objective and convexity of the constraint, the optimal consumption
and portfolio policies can be characterized through a two-step process, where the optimal
consumption vector ct is first determined as a function of available consumption expenditure
Wt, and the portfolio qt+1 is then determined taking as given the optimal consumption policy.

Then, using the definition of the consumption basket Ct in (2.2), the first order optimality
conditions for cjt, j = 1, ...J, can be written

[(1− α)(1− η)](Ct)
1−ησ
σ (cjt)

− 1
σφj = χtpjt. (A1.4)

Isolating cjt in (A1.4) and multiplying both sides by pjt yields

pjtcjt = χ−σt (pjt)
1−σ(Ct)

−(1−ησ)(φj)
σ[(1− α)(1− η)]σ. (A1.5)

Then recognizing that Wt =
∑

j pjtcjt and Pt =

[
J∑
j=1

(φj)
σ(pjt)

1−σ

]1/(1−σ)

, summing both

sides of (A1.5) over j allows one to solve for the Lagrange multiplier as

χt =

(
Wt

Pt

)− 1
σ

P−1
t (Ct)

1−ησ
σ [(1− α)(1− η)]. (A1.6)

Substituting for χt in (A1.4) and rearranging terms then gives the optimal consumption
functions in (2.4), that is,

cjt(p
c
t ,Wt) =

Wt

Pt

[
Ptφj
pjt

]σ
, j = 1, ..J. (A1.7)
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Now (A1.7) implies

(Ct)
σ−1
σ =

∑
j

φj(cjt)
σ−1
σ =

(
Wt

Pt

)σ−1
σ

(Pt)
σ−1

(∑
j

(φj)
σ(pjt)

1−σ

)
. (A1.8)

But since
∑

j(φj)
σ(pjt)

1−σ = (Pt)
1−σ, (A1.8) yields Ct = Wt

Pt
.

Next, conditional on optimal ct and, hence, Ct = Wt

Pt
, the derivation of the optimal portfo-

lio condition (2.6) with Epstein and Zin (1989) preferences is standard using straightforward
application of arguments in Epstein and Zin (1989).

A.2 Derivation of Optimal Intermediate Goods Policies

We derive the optimal demand for material intermediate goods. The derivation for opti-
mal investment intermediate goods is analogous.

The firm’s objective is to maximize effective materials input

Hj
t =

[
Jh∑

n=Jc+1

ϕhnj(H
j
nt)

(ζhj−1)/ζhj

]ζhj /(ζhj−1)

(A2.1)

subject to a fixed materials cost Υj
ht. Hence, the Lagrangian is

max
Hj
nt

[
Jh∑

n=Jc+1

ϕhnj(H
j
nt)

(ζhj−1)/ζhj

]ζhj /(ζhj−1)

+ χjht

[
Υj
ht −

Jh∑
n=Jc+1

pntH
j
nt

]
. (A2.2)

This yields the optimality conditions for Hj
nt, n = 1, ...J

(Hj
t )

1

(ζh
j
−1) (Hj

nt)
− 1

ζh
j ϕnj = χjhtp

n
t , (A2.3)

which implies that

pntH
j
nt = (χjht)

−ζhj (Hj
t )

ζhj

(ζh
j
−1) (pnt )1−ζhj (ϕnj)

ζhj . (A2.4)

Summing both sides of (A2.4) over n gives

χjht = (Υj
ht)

− 1

ζh
j

(Hj
t )

1

(ζh
j
−1)

[
Jh∑

n=Jc+1

(ϕhnj)
ζhj (pnt )1−ζhj

]1/ζhj

. (A2.5)

Substituting (A2.5) in (A2.3) yields,

Hj
nt = (ϕhnj)

ζhj (pnt )−ζ
h
j Υj

ht

[
Jh∑

n=Jc+1

(ϕhnj)
ζhj (pnt )1−ζhj

]−1

. (A2.6)

2



Now putXj
t =

[∑Jh
n=Jc+1(ϕhnj)

ζhj (pnt )1−ζhj
]1/(1−ζhj )

so thatXj
t =

[∑Jh
n=Jc+1(ϕhnj)

ζhj (pnt )1−ζhj
]−1

=

(Xj
t )
ζhj−1. Hence,

Υj
ht

[
Jh∑

n=Jc+1

(ϕhnj)
ζhj (pnt )1−ζhj

]−1

=

(
Υj
ht

Xj
t

)
(Xj

t )
ζhj
. (A2.7)

Let us now conjecture that
(

Υjht
Xj
t

)
= Hj

t , so that (A2.6)-(A2.7) together yield,

Hj
nt = (ϕhnj)

ζhj

[
pnt
Xj
t

]−ζhj
Hj
t . (A2.8)

Then using (A2.8) in Υj
ht =

Jh∑
n=Jc+1

pntH
j
nt indeed verifies that

Υjht
Xj
t

= Hj
t .

A.3 Proof of Proposition 1: As in the text, we suppress the notation for sectors
(unless necessary) for expositional ease. Using the Bellman-representation (2.16), along
any competitive equilibrium path at any t, conditional on Ωt = (Wt, Pt, At, Xt, Zt, Kt), the
optimization problem for the typical competitive firm is

Vt(Ωt) = max
It,Ht≥0

Dt + Et
[
Vt+1(Ωt+1)

]
, s.t., (A3.1)

Dt = ptYt −XtHt −O(It, Kt), (A3.2)

pt = φ
(
WtP

σ−1
t

)1/σ
(Yt)

−1/σ , (A3.3)

Yt = F (Kt, Ht, At) = At(Kt)
ψK (Ht)

ψ
H , (A3.4)

O(It, Kt) = ZtIt + 0.5υ

(
It
Kt

)2

Kt, (A3.5)

Kt+1 = (1− δ)Kt + It. (A3.6)

Taking the equilibrium sectoral price pt as given, optimization with respect to Ht then yields

ptFH(Kt, Ht, At) = Xt. (A3.7)

Next, the optimal (interior) It satisfies

0 =
∂Dt

∂It
+ Et

[
∂Vt+1(Ωt+1)

∂Kt+1

]
. (A3.8)

But from (A3.2) and (A3.5),

∂Dt

∂It
= −OI(It, Kt) = −

[
Zt + υ

(
It
Kt

)]
. (A3.9)

And using the intertemporal envelope theorem (that sets the indirect effects of ∂Kt+1 on the

3



optimally chosen It+1 and Ht+1 to zero), along the competitive equilibrium path

∂Vt+1(Ωt+1)

∂Kt+1

= pt+1FK(Kt+1, Ht+1, At+1)−OK(It+1, Kt+1)− (1− δ)∂Dt+1

∂It+1

OK(It+1, Kt+1) = −0.5υ

(
It+1

Kt+1

)2

,
∂Dt+1

∂It+1

= −OI(It+1, Kt+1). (A3.10)

(A3.8) then yields,[
Zt + υ

(
It
Kt

)]
= Et

[
Ωt,t+1

{
pt+1FK(Kt+1, Ht+1, At+1) + 0.5υ

(
It+1

Kt+1

)2

+

(1− δ)

[
Zt+1 + υ

(
It+1

Kt+1

)]}]
, (A3.11)

where Kt+1 = Kt(1− δ) + It. The equilibrium product price is then obtained from (A3.3) as

pt = φ

(
Wt

Pt

)1/σ

Pt [F (Kt, Ht, At)]
−1/σ . (A3.12)

Finally, the equilibrium asset market restriction in Equation (2.21) follows from Equation
(2.7).

As in the text, we suppress the notation for sectors (unless necessary) for expositional ease.

B. Equilibrium Computations

B.1 Steady State Computations

We will denote the deterministic steady state with bars. Note that in the deterministic
steady state the pricing kernel is Λ̄ = α because Wt+1 = Wt = W̄, Pt+1 = Pt = P̄, and
Ut = Ut+1. Now, in the deterministic steady state, the equilibrium input choice and and
capital stock (H̄, K̄) are fixed (and hence Ī = δK̄). These quantities are derived from the
optimality conditions (2.18) and (2.19) in the text. In the steady state, the Euler conditions
are

p̄F (K̄, H̄, Ā) = X̄, (B.1.1)

−(Z̄ + υδ) + α
[
p̄F (K̄, H̄, Ā) + 0.5υ(δ)2 + (1− δ)(Z̄ + υδ)

]
= 0, (B.1.2)

where the steady state sector prices and sales are

p̄ = φW̄ 1/σP̄
σ−1
σ [F (K̄, H̄, Ā)]−1/σ, (B.1.3)

Ψ̄ = φW̄ 1/σP̄
σ−1
σ [F (K̄, H̄, Ā)](σ−1)/σ (B.1.4)

Noting that F (K̄, H̄, Ā) = Ā(K̄)ψ(H̄)ψ, F (K̄, H̄, Ā) = ψF (K̄, H̄, Ā)/H,
F (K̄, H̄, Ā) = ψF (K̄, H̄, Ā)/K, and substituting (B.1.3)-(B.1.4) in (B.1.1)-(B.1.2) yields

4



the system of equations

H̄ =
[
(φψ)σW̄ P̄

σ−1
(Ā)σ−1(K̄)

(σ−1)ψ
(X̄)−σ

]1/ν

, (B.15)

K̄ =

[(
αφψ

e

)σ
W̄ P̄

σ−1
(Ā)σ−1(H̄)

(σ−1)ψ
]1/ν

, (B.1.6)

where ν ≡ ψ + σ(1− ψ), ν ≡ ψ + σ(1− ψ), and e ≡ Z̄ +
(
υδ
2

)
(2− α(2 + δ)).

To solve for (H̄, K̄) analytically, it is convenient to take the log of both sides of (B.15)-
(B.1.6). Using small letters to express logs, setting π̄ = log(P̄ )), and solving for H̄we get

H̄ = exp

(
(ς)−1

[
σ(log φ+ logψ − x̄) + (σ − 1)

(
ψ

ν

)
×

(logα + log φ+ logψ − log e) +

(
1 + (σ − 1)

(
ψ

ν

))
[w̄ + (σ − 1)(ā+ π̄)

])
=

[
(φψ)σ(W̄ P̄

σ−1
(Ā)σ−1)n

(
αφψ

e

)ς
(X̄)−σ

]1/o

, (B.1.7)

where ς ≡ (νx− (σ − 1)2ψ(ψ/ν)), ς ≡ (σ − 1)(ψ/ν), and n ≡ 1 + ς. K̄is then recovered
from substituting (B.1.7) in (B.1.6).

B.2 Analytic Approximations

B.2.1 Pricing Kernel

From (2.5), the log of the real pricing kernel λt+1 ≡ log(Λt,t+1) is

λt+1 = θ logα− ηθ [gw,t+1 − gπ,t+1] + (θ − 1)rc,t+1, (B.2.1)

where gw,t+1 and gπ,t+1 are the log growth rates of income and aggregate price, respectively,
and rc,t+1 ≡ log(RC,t+1). Using the Campbell and Shiller (1988) log-linearization approach,
we can represent rc,t+1 as

rc,t+1 = f0 + f1zc,t+1 − zct + gw,t+1 − gπ,t+1, (B.2.2)

where zct is the log price-consumption ratio. Here f0 and f1 are approximating constants
that depend on the unconditional mean of zct, say, zc. (In our numerical computations, we
take zc to be the mean of simulated (wt − pt).) Indeed,

f0 = log(1 + exp(zc))− f1zc; f1 =
exp(zc)

1 + exp(zc)
. (B.2.3)

Exploiting the (log form of) the Euler condition (2.5), in the setting at hand zct is a linear
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function of the logs of the aggregate state variables Wt and Pt, namely,

zct = κc0 + κcwwt + κcππt. (B.2.4)

Since gw,t+1 = (ρw − 1)wt + εwt+1 and gπ,t+1 = (ρπ − 1)πt + επt+1, substitution of (B.2.2) and
(B.2.4) in (B.2.1) allows one to write

λt+1 = B0 +Bwwt +Bππt + bwεw,t+1 + bπεπ,t+1, (B.2.5)

where

B0 = θ logα;

Bw ≡ (ρw − 1) [1− ηθ + (θ − 1)f1κcw]− (θ − 1)κcw;

Bπ ≡ (ρπ − 1) [ηθ − 1− (θ − 1)f1κcπ] + (θ − 1)κcπ;

bw ≡ −ηθ + (θ − 1)[f1κcw + 1];

bπ ≡ ηθ − (θ − 1)[f1κcπ + 1]. (B.2.6)

We can then obtain the coeffi cients of zct in (B.2.4) through the method of undetermined
coeffi cients. The Euler condition (2.5) is

1 = Et[exp(λt+1 + πt − πt+1 + rc,t+1)]

= Et[exp(θ logα− ηθ [gw,t+1 − gπ,t+1] + θrc,t+1 + πt − πt+1)] (B.2.7)

Since (B.2.7) must hold for all values of the state variables, all terms involving wt and πt
must satisfy

wtθ[(ρw − 1)(1− η) + κcw(f1(ρw − 1)− 1)] = 0, (B.2.8)

πt {θ[(ρπ − 1)(η − 1) + κcπ(f1(ρπ − 1)− 1)] + 1− ρπ} = 0. (B.2.9)

From (B.2.8)-(B.2.9), it follows

κcw =
(ρw − 1)(η − 1)

f1(ρw − 1)− 1
, κcπ =

(ρπ − 1)[θ(1− η) + 1]

θ(f1(ρπ − 1)− 1)
. (B.2.10)

And to ensure that the constant terms in (B.2.7) equal zero, from (B.2.2) and (B.2.4), the
coeffi cient κc0 is calculated as, κc0 = logα+f0

1−f1 . Finally, note that the log of the nominal pricing
kernel mt+1 = λt+1 + πt − πt+1 is

mt+1 = B0 +Bwwt + (Bπ + (1− ρπ))πt + bwεw,t+1 + bπεπ,t+1. (B.2.11)

B.2.2 Approximations of Industry Equilibrium Conditions
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Note that the optimality condition for materials inputs (2.18) can be written

0 =
ψHΨt

Ht

−Xt, where

Ψt = φW
1/σ
t P

σ−1
σ

t [At(Kt)
ψK (Ht)

ψH ]
(σ−1)
σ (B.2.12)

Hence, log-linearization of the optimality condition around the steady state implies(
ψHΨ̄

H̄

)[
σ + Ŵt + (σ − 1)

{
P̂t + Ât + ψKK̂t

}
− νHĤt

]
− σX̄ (1 + X̂t) = 0, (B.2.13)

where νH ≡ ψH + σ(1− ψH) has been defined above. But using the fact that in the steady
state ψHΨ̄(H̄ )−1 = X̄ , (B.2.13) gives(

ψHΨ̄

H̄

)[
Ŵt + (σ − 1)

{
P̂t + Ât + ψKK̂t

}
− νHĤt

]
− σX̄X̂t = 0 (B.2.14)

Dividing through by ψHΨ̄(H̄ )−1 and noting that X̄/(ψHΨ̄(H̄ )−1) = 1 and rearranging terms
then yields

Ĥt = (νH)−1
[
Ŵt + (σ − 1)

{
P̂t + Ât + ψKK̂t

}
− σX̂t

]
. (B.2.15)

To derive the log-linearized form of equilibrium investment, we use the fact that

It = Kt+1 − (1− δ)Kt

and reformulate the optimization problem for investment (in the standard way) as the choice
of Kt+1 at t. Noting that

∂Ψt+1

∂Kt+1

= pt+1FK(Kt+1, Ht+1, At+1) = ψK
Ψt+1

Kt+1

, (B.2.16)

the investment Euler condition (2.19) can be written

Zt + υ

(
It
Kt

)
= Et

[
Mt,t+1

{
ψK

Ψt+1

Kt+1

+
(υ

2

)( It+1

Kt+1

)2

+ (1− δ)

(
Zt+1 + υ

(
It+1

Kt+1

))}]
.

(B.2.17)
To derive the equilibrium law of motion for capital stock, one looks for a second order
difference equation in K̂t.We will log-linearize (B.2.17) and then use the log-linearization of
the investment transition equation to get:

Ît = (δ)−1
(
K̂t+1 − K̂t(1− δ)

)
. (B.2.18)

In (B.2.18), we use the fact that Ī = δK̄ , so that K̄/Ī = 1/δ. Then log-linearization of
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(B.2.17) implies (noting that M̄ = α) :

Z̄(1 + Ẑt) + υδ(1 + Ît − K̂t) = αEt
[
ψK

Ψ̄

K̄
(1 + M̂t,t+1 + Ψ̂t+1 − K̂t+1) + (1− δ)Z̄×

(1 + Ẑt+1 + M̂t,t+1) +
(υ

2

)
(δ)2(1 + M̂t,t+1 + 2(Ît+1 − K̂t+1)) +

υδ(1− δ)(1 + M̂t,t+1 + (Ît+1 − K̂t+1))
]

(B.2.19)

Rearranging terms, the RHS of (B.2.19) can be written

αEt
[
(1 + M̂t,t+1)

(
ψK

Ψ̄

K̄
+ (1− δ)Z̄ +

(
υδ

2

)
(2− δ)

)
+

(1− δ)Z̄ Ẑt+1 + ψK
Ψ̄

K̄
(Ψ̂t+1 − K̂t+1) + υδ(Ît+1 − K̂t+1)

]
. (B.2.20 )

But in the steady state, the Euler for investment is

Z + υδ = α

[
ψK

Ψ̄

K̄
+ Z(1− δ) +

(
υδ

2

)
(2− δ)

]
. (B.2.21)

Combining (B.2.20 ) and (B.2.21), we can write the log-linearized Euler (B.2.17) as

0 = Et
[
M̂t,t+1u

M, + ψK
Ψ̄

K̄
(Ψ̂t+1 − K̂t+1) + υδ

{
(Ît+1 − K̂t+1)− α−1(Ît − K̂t)

}
+

Z̄
{

(1− δ)Ẑt+1 − α−1Ẑt

}]
, (B.2.22)

where uM, ≡
(
ψK

Ψ̄
K̄

+ (1− δ)Z̄ +
(
υδ
2

)
(2− δ)

)
. Now note from (B.2.12) that

Ψt+1 = φW
1/σ
t+1P

σ−1
σ

t+1 [At+1(Kt+1)ψK (Ht+1)ψH ](σ−1)/σ

Hence, log-linearization gives

Ψ̂t+1 =

(
φ

σ

)[
Ŵt+1 + (σ − 1){P̂t+1 + Ât+1 + ψKK̂t+1 + ψHĤt+1}

]
, (B.2.23)

Ĥt+1 = (νH)−1
[
Ŵt+1 + (σ − 1)

{
P̂t+1 + Ât+1 + ψKK̂t+1

}
− σX̂t+1

]
, (B.2.24)

where (B.2.24) follows from (B.2.15). However, from (B.2.18)

Ît+i − K̂t+i = (δ)−1
(
K̂t+i − K̂t

)
, i = 0, 1
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Substituting in (B.2.22) then yields

0 = Et
[
M̂t,t+1u

M, +

(
φψK
σ

)
Ψ̄

K̄
{(Ŵt+1 + (σ − 1)(P̂t+1 + Ât+1))(1 + uH,)−

uH,σX̂t+1}+ uK,2 K̂t+2 + uK,1 K̂t+1 + uK,0 K̂t + Z̄
{

(1− δ)Ẑt+1 − α−1Ẑt

}]
(B.2.25)

where uH, = (νH)−1ψH , u
K,
2 = υ, uK,0 =

(
υ
α

)
, and

uK,1 =

(
ψKΨ̄

K̄

(
φ

σ
(σ − 1)ψK(1 + uH,)− σ

)
− υ(1 + α)

α

)
. (B.2.26)

We now use the method of undetermined coeffi cients to ensure that the right hand side
of (B.2.25) is zero for all values of the state variables. We will write kt = log(Kt). Recall
that

M̂t,t+1 = λt+1 + πt − πt+1 − logα.

Moreover, Ŵt+1 = wt+1 − w̄, where w̄ = log W̄. Hence, we have

Ŵt+1 = ρwwt + εwt+1 − w̄;

P̂t+1 = ρππt + επt+1 − π̄
Ât+1 = ρaat + εa,t+1 − ā
X̂t+1 = ρxxt + εx,t+1 − x̄,
Ẑt+1 = ρzzt + εz,t+1 − z̄

and finally K̂t+i = kt+i − k̄, i = 0, 1, 2. Then from (B.2.11)

Et
[
M̂t,t+1u

M,
]

= uM,[Bwwt + (Bππt + (1− ρπ)πt + (θ − 1) logα] (B.2.27)

Similarly, the expectation of the second term in (B.2.25) is(
φψK
σ

)
Ψ̄

K̄

{(
[ρwwt + (σ − 1)(ρππt + ρaat)](1 + uH,)− uH,σρxxt

)
−[

(w̄ + (σ − 1)(π̄ + ā))(1 + uH,)− uH,σx̄
]}
. (B.2.28)

Next, we conjecture (and subsequently verify) that kt+1 is an affi ne function of the form

kt+1 = ξ0 + ξwwt + ξππt + ξaat + ξxxt + ξzzt + ξkkt, (B.2.29)

Hence
Et
[
uK,2 K̂t+2 + uK,1 K̂t+1 + uK,0 K̂t

]
=
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kt

[
uK,2 (ξk)

2 + uK,1 ξk + uK,0

]
+ wt

[
ξw{u

K,
2 (ρw + ξk) + uK,1 }

]
+

πt

[
ξπ{u

K,
2 (ρπ + ξk) + uK,1 }

]
+ at

[
ξa{u

K,
2 (ρa + ξk) + uK,1 }

]
+ xt

[
ξx{u

K,
2 (ρx + ξk)+

uK,1 }
]

+ zt

[
ξz{u

K,
2 (ρz + ξk) + uK,1 }

]
− ξ0

[
uK,2 (1 + ξk) + uK,1

]
−

[ξww̄ + ξππ̄ + ξaā + ξxx̄ + ξkk̄].

To ensure that terms multiplying kt equal zero, the following quadratic equation in ξk must
be satisfied

uK,2 (ξk)
2 + uK,1 ξk + uK,0 = 0

so that

ξk = − uK,1

2uK,2

±

√
(uK,1 )2 − 4uK,2 u

K,
0

2uK,2

(B.2.31)

In the standard way, the root with | ξk |< 1 will be chosen. Next collecting terms for wt and
requiring them to be zero, we have

wt

[
ξw{u

K,
2 (ρw + ξk) + uK,1 }+ uM,Bw +

(
φψKΨ̄

σK̄

)
ρw(1 + uH,)

]
= 0 (B.2.32)

so that

ξw = −

(
φψKΨ̄

σK̄

)
ρw(1 + uH,) + uM,Bw

uK,2 (ρw + ξk) + uK,1

, (B.2.33)

which is well defined since ξk is known from (B.2.31). Similar calculations then show

ξπ = −

(
φψKΨ̄

σK̄

)
(σ − 1)ρπ(1 + uH,) + uM,(Bπ + (1− ρπ))

uK,2 (ρπ + ξk) + uK,1

, (B.2.34)

ξa = −

(
φψKΨ̄

σK̄

)
(σ − 1)ρa(1 + uH,)

uK,2 (ρa + ξk) + uK,1

, (B.2.35)

ξx =

(
φψKΨ̄

σK̄

)
uH,σρx

uK,2 (ρx + ξk) + uK,1

, (B.2.36)

ξz =
1− αZ̄(1− δ)ρz

α
[
uK,2 (ρz + ξk) + uK,1

] . (B.2.37)
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Finally, to ensure that all constant terms collectively equal zero, we need ξ0 = T0/T1 where

T0 = [ξww̄ + ξππ̄ + ξaā + ξxx̄ + ξz z̄ + ξkk̄] +

(
φψKΨ̄

σK̄

)
×

[(w̄ + (σ − 1)(π̄ + ā)) + (1 + uH,)− uH,σx̄
]
−

uM,(θ − 1) logα + υδ

(
1 + α

α

)
, (B.2.38)

T1 = uK,2 (1 + ξk) + uK,1 . (B.2.39)

(B.2.31)-(B.2.39) then complete the specification of equilibrium kt+1 as a function of
current state variables. It is also useful to re-express (B.2.15) in terms of ht = log(Ht).
Recalling that Ĥt = ht − h̄, (B.2.15) gives

ht − h̄ = (νH)−1
[
wt + (σ − 1)(πt + at + ψKkt)− σxt − (w̄ + (σ − 1)(π̄ + ā + ψK k̄)− σx̄)

]
.

(B.2.40)

B.2.3 Equilibrium Industry Equity Risk Premium

Log-linearizing dividends in Equation (2.14) implies

D̄(1 + D̂t) = Ψ̄(1 + Ψ̂t)− X̄H̄ (1 + X̂t + Ĥt)− [Z̄ Ī (1 + Ẑt + Ît) +

0.5υ

(
(Ī )2

K̄

)
(1 + 2Ît − K̂t)]. (B.2.41)

Using the facts that Ī = δK̄ , D̄ = Ψ̄ − X̄H̄ − δK̄(Z̄ + 0.5υδ), and substituting for Ît from
(B.2.18) yields

D̄D̂t = Ψ̄Ψ̂t − X̄H̄ (X̂t + Ĥt)− K̄ [δZ̄ Ẑt + K̂t+1(Z̄ + υδ) +

K̂t{Z̄(1− δ) +

(
υδ

2

)
(2− δ)}]. (B.2.42)

Now, recall from (B.2.12), (B.2.15) (or (B.2.40)) that

Ψ̂t =

(
φ

σ

)[
Ŵt + (σ − 1)

(
P̂t + Ât + ψKK̂t + ψHĤt

)]
, (B.2.43)

Ĥt = (νH)−1
[
Ŵt + (σ − 1)

(
P̂t + Ât + ψKK̂t

)
− σX̂t

]
. (B.2.44)

But recognizing that D̂t = dt − d̄, substituting (B.2.43)-(B.2.44) and (B.2.29) (for K̂t+1 =
kt+1 − k) in (B.2.42), we can write the log of dividends as

dt = Nd,0 +Nd,wwt +Nd,ππt +Nd,aat +Nd,xxt +Nd,zzt +Nd,kkt, (B.2.45)
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where

Nd,w = (D̄)−1

[
Ψ̄φ

σ

(
1 +

ψH(σ − 1)

νH

)
−
(
X̄H̄

νH

)
− K̄(Z̄ + υδ)ξw

]
(B.2.46)

Nd,π = (D̄)−1

[
(σ − 1)Ψ̄φ

σ

(
1 +

ψH(σ − 1)

νH

)
−
(
X̄H̄ (σ − 1)

νH

)
−

K̄(Z̄ + υδ)ξπ
]

(B.2.47)

Nd,a = (D̄)−1

[
(σ − 1)Ψ̄φ

σ

(
1 +

ψH(σ − 1)

νH

)
−
(
X̄H̄ (σ − 1)

νH

)
−

K̄(Z̄ + υδ)ξa
]

(B.2.48)

Nd,x = −(D̄)−1

[
Ψ̄φ

(
ψH
νH

)
+ X̄H̄ + K̄(Z̄ + υδ)ξx

]
(B.2.49)

Nd,z = −(D̄)−1K̄
[
Z̄δ + (Z̄ + υδ)ξz

]
(B.2.50)

Nd,k = (D̄)−1

[
(σ − 1)ψKΨ̄φ

σ

(
1 +

ψH(σ − 1)

νH

)
−
(
X̄H̄ (σ − 1)ψK

νH

)
−

K̄(Z̄ + υδ)ξk + K̄

{
Z̄(1− δ) +

(
υδ

2

)
(2− δ)

}]
, (B.2.51)

and Nd,0 is a term of steady state constants that will not affect the covariance function of
the ERP that we consider below.

With log equilibrium dividends in hand, we return to equilibrium equity return condition
(2.7) to deduce the state representation of the log of the stock price st = log(St). We first
rewrite the equilibrium condition as

Et
[
Mt,t+1

(
Dt+1

St
+
St+1

St

)]
= 1. (B.2.52)

Log-linearizing (B.2.52) we get (using M̄ = α)

αEt
[(

D̄

S̄

)(
1 + M̂t,t+1 + D̂t+1 − Ŝt

)
+
(

1 + M̂t,t+1 + Ŝt+1 − Ŝt
)]

= 1. (B.2.53)

However, in the steady state S̄ = αD̄
1−α , and hence

α

(
D̄

S̄
+ 1

)
= α

(
1− α
α

+ 1

)
= 1. (B.2.54)

Therefore, (B.2.53) becomes (recognizing
(
D̄
S̄

+ 1
)

= 1/α)

Et
[
M̂t,t+1 + (1− α)D̂t+1 + αŜt+1 − Ŝt

]
= 0. (B.2.55)
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We conjecture that

st = Ns,0 +Ns,wwt +Ns,ππt +Ns,aat +Ns,xxt +Ns,zzt +Ns,kkt, (B.2.56)

so that

Et
[
αŜt+1 − Ŝt

]
= (α− 1)(Ns,0 − s̄) +Ns,w(αρw − 1)wt +Ns,π(αρπ − 1)πt +

Ns,a(αρa − 1)at +Ns,x(αρx − 1)xt +

Ns,z(αρz − 1)zt +Ns,k(αkt+1 − kt). (B.2.57)

Meanwhile, from the foregoing

Et
[
(1− α)D̂t+1

]
= (1− α)

[
Nd,0 +Nd,wρwwt +Nd,πρππt +Nd,aρaat+

Nd,xρxxt +Nd,zρzzt +Nd,kkt+1 − d̄
]
, (B.2.58)

Et
[
M̂t,t+1

]
= (θ − 1) logα +Bwwt + (Bπ + (1− ρπ))πt. (B.2.59)

But using (B.2.29), we have

αkt+1 − kt = α [ξ0 + ξwwt + ξππt + ξaat + ξxxt + ξzzt] + (αξk − 1)kt, (B.2.60)

(1− α)kt+1 = (1− α) [ξ0 + ξwwt + ξππt + ξaat + ξxxt + ξzzt + ξkkt] . (B.2.61)

Thus substituting (B.2.60)-(B.2.61) in (B.2.57)-(B.2.58) we get (up to constants),

Et
[
M̂t,t+1 + (1− α)D̂t+1 + αŜt+1 − Ŝt

]
=

0 = wt
(
Bw +Ns,w(αρw − 1) + (1− α)Nd,wρw + ξw(αNs,k + (1− α)Nd,k)

)
+ πt (Bπ + (1− ρπ)+

Ns,π(αρπ − 1) + (1− α)Nd,πρπ + ξπ(αNs,k + (1− α)Nd,k)
)

+ at
(
Ns,a(αρa − 1) + (1− α)Nd,aρa+

ξa(αNs,k + (1− α)Nd,k)
)

+ xt
(
Ns,x(αρx − 1) + (1− α)Nd,xρx + ξx(αNs,k + (1− α)Nd,k)

)
+

zt
(
Ns,z(αρz − 1) + (1− α)Nd,zρz + ξz(αNs,k + (1− α)Nd,k)

)
+

kt
(
Ns,k(αξk − 1) + (1− α)Nd,kξk

)
. (B.2.62)

Hence, to ensure that items multiplying kt in (B.2.63) are zero, we must have

Ns,k =
(1− α)Nd,kξk

1− αξk
, (B.2.63)

where Nd,k is computed in (B.2.50). With Ns,k in hand, we can choose the remaining coef-
ficients in (B.2.56) to ensure that (B.2.55) holds for all values of the state variables. That
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is,

Ns,w =
Bw + (1− α)Nd,wρw + ξw(αNs,k + (1− α)Nd,k)

1− αρw
,

Ns,π =
Bπ + (1− ρπ) + (1− α)Nd,πρπ + ξπ(αNs,k + (1− α)Nd,k)

1− αρπ
,

Ns,a =
(1− α)Nd,aρa + ξa(αNs,k + (1− α)Nd,k)

1− αρa
,

Ns,x =
(1− α)Nd,xρx + ξx(αNs,k + (1− α)Nd,k)

1− αρx
,

Ns,z =
(1− α)Nd,zρz + ξz(αNs,k + (1− α)Nd,k)

1− αρz , (B.2.64)

Finally, the constant term in (B.2.56) can be computed to be

Ns,0 =
(α− 1)(Nd,0 − d̄ + s̄ +Nd,kξ0)− αNs,kξ0 − (θ − 1) logα

(α− 1)
. (B.2.65)

The coeffi cients in (B.2.64)-(B.2.65) verify that st is indeed an affi ne function of the state
variables.

Next, the Euler condition for equity returns imply (in the standard fashion)

Et
[
Rt+1 −R

f
t+1

]
= −Covt

(
Mt,t+1,

Dt+1 + Sn,t+1

St

)
Rf,t+1, (B.2.66)

or dividing both sides of (B.2.66) by Rf,t+1

Et

[
Rt+1

Rf
t+1

− 1

]
= −Covt

(
Mt,t+1,

Dt+1 + St+1

St

)
. (B.2.67)

Log-linearizing the left hand side of (B.2.67) gives (for rt+1 = log(Rt+1), rft+1 = rft+1)

Et

[
Rt+1

Rf
t+1

− 1

]
= Et

[(
R

Rf

)(
1 + R̂t+1 − R̂

f
t+1

)
− 1

]
= Et

[
rt+1 − r

f
t+1

]
,

since in the deterministic steady state R
Rf

= 1 and hence R̂t+1 − R̂
f
t+1 = rt+1 − r

f
t+1. Then
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log-linearizing both sides of (B.2.67) yields

Et
[
rt+1 − r

f
t+1

]
= −Covt

(
α(1 + M̂t,t+1),

D̄

S̄
(1 + D̂t+1) + (1 + Ŝt+1 − Ŝt

)
= −αCovt

(
M̂t,t+1,

D̄

S̄
D̂t+1 + Ŝt+1

)
= −αCovt

(
λt+1 − πt+1,

(
1− α
α

)
dt+1 + st+1

)
, (B.2.68)

where the final equality follows from recognizing that M̂t,t+1 = mt+1 − logα,mt+1 = λt+1 +

πt − πt+1, D̂t+1 + Ŝt+1 = dt+1 + st+1 − log(D̄)− log(S̄), and S̄ = αD̄
1−α . But

−αCovt
(
λt+1 − πt+1,

(
1− α
α

)
dt+1 + st+1

)
= αCovt

(
λt+1 − πt+1,−

{(
1− α
α

)
dt+1 + st+1

})

= αCovt

(
λt+1 − πt+1 − Et[λt+1 − πt+1],−

{(
1− α
α

)
dt+1 + st+1 − Et[

(
1− α
α

)
dt+1 + st+1]

})
.

(B.2.69)
From (B.2.4) and (B.2.46)-(B.2.65) we get (recognizing that kt+1 is deterministic conditional
on Γt)

λt+1 − πt+1 − Et[λt+1 − πt+1] = bwε
w
t+1 + (bπ − 1)επt+1, (B.2.70)

−
{(

1− α
α

)
dt+1 + st+1 − Et

[(
1− α
α

)
dt+1 + st+1

]}
= −

((
1− α
α

)
Nd + Ns

)′
εt+1,

(B.2.71)
where bw and bπ are defined in (B.2.5). Meanwhile, Nd = (Nd,w, Nd,π, Nd,a, Nd,x, Nd,z) are
defined in (B.2.46)-(B.2.51) and Ns = (Ns,w, Ns,π, Ns,a, Ns,x, Ns,z) are defined in (B.2.64).
An additional piece of notation allows one to more concisely express (B.2.69). Put

Ñw = −
[(

1− α
α

)
Nd,w +Ns,w

]
,

and similarly for Ñπ, Ña, Ñx to get from (B.2.46)-(B.2.51) and (B.2.64) (upon switching the
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sign of the denominator)

Ñw =
(1− α)Nd,w + α(Bw + ξw(αNs,k + (1− α)Nd,k))

α(αρw − 1)
, (B.2.72)

Ñπ =
(1− α)Nd,π + α(Bπ + (1− ρπ) + ξπ(αNs,k + (1− α)Nd,k))

α(αρπ − 1)
, (B.2.73)

Ña =
(1− α)Nd,a + ξa(αNs,k + (1− α)Nd,k)

α(αρa − 1)
, (B.2.74)

Ñx =
(1− α)Nd,x + ξx(αNs,k + (1− α)Nd,k)

α(αρx − 1)
, (B.2.75)

Ñz =
(1− α)Nd,z + ξx(αNs,k + (1− α)Nd,k)

α(αρz − 1)
. (B.2.76)

Then,

αCovt

(
λt+1 − πt+1,−

{(
1− α
α

)
dt+1 + st+1)

})
=

bwÑV art(ε
w
t+1) + (bπ − 1)ÑπV art(ε

π
t+1) + ((bπ − 1)Ñw + bwÑπ)Covt(ε

w
t+1, ε

π
t+1) +

bwÑaCovt(ε
w
t+1, ε

a
t+1) + (bπ − 1)ÑaCovt(ε

π
t+1, ε

a
t+1) + bwÑxCovt(ε

w
t+1, ε

x
t+1) + (bπ − 1)×

ÑxCovt(ε
π
t+1, ε

x
t+1) + bwÑzCovt(ε

w
t+1, ε

z
t+1) + (bπ − 1)ÑzCovt(ε

π
t+1, ε

z
t+1) (B.2.77)

Hence, we can write

Et[rt+1 − r
f
t+1] = βwΦ2

w + βπΦ2
π + βwπΦwπ + βawΦaw + βaπΦaπ +

βxwΦxw + βxπΦxπ + βzwΦzw + βzπΦzπ,

where

βw = αbwÑw, βπ = α(bπ − 1)Ñπ, βwπ = α((bπ − 1)Ñw + bwÑπ),

βaw = αbwÑa, βaπ = α(bπ − 1)Ña, βxw = αbwÑx,

βxπ = α(bπ − 1)Ñx, βzw = αbwÑz, βzπ = α(bπ − 1)Ñz (B.2.78)

C.1 Steady State Parameterization

To match the endogenous H̄ , K̄ and Ȳ to the sample means of the industry data (in
per capita terms), we proceed as follows. Let MC, Ydata denote the sample mean of the
materials cost. Then, by definition, MC = X̄H̄ . Hence, the materials input optimality
condition (B.1.1) can be written (recognizing that ψH Ȳ /H̄ )

p̄Ȳ

H̄
=
MC

H̄
, (C.1.1)
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which implies that
ψH(p̄Ȳ ) = MC. (C.1.2)

Meanwhile, the steady state Euler condition (B.1.2) implies

ψK

(
p̄Ȳ

K̄

)
=

(
Z̄ + υδ

α

)
(1− α(1− δ))− 0.5υ(δ)2. (C.1.3)

Put eK ≡
(
Z̄+υδ
α

)
(1− α(1− δ))− 0.5υ(δ)2. Now dividing (C.1.2) by (C.1.3) gives

K̄ =

(
ψK
ψH

)[
MC

eK

]
. (C.1.4)

Then we set

H̄ =

(
Ydata

(K̄)ψK

)1/ψH

, (C.1.5)

where K̄ is given in (C.1.4). X̄ is then computed as the ratio MC/H̄. And using H̄ and K̄
above, Ā is set such that

Ā =
Ydata

(K̄)ψK (H )ψH
. (C.1.6)

Finally, Z̄ , ψK , ψH are calibrated to match H̄ , K̄ and Ȳ with the sample mean values of
industry data (in per capita terms).
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Table A.1. Steady State Values for Numerical Calculations

Steady State Values

Aggregate W̄ (dollars) P̄ C̄
W̄

19905 1.286 0.78 (0.78)
Sector Ȳ (million dollars) X̄H̄ (million dollars) Z̄ K̄ (million dollars)
Consumer Durables 18.23 (18.23) 9.56 (9.56) 10.38 (10.34)
Consumer Non-Durables 23.69 (23.69) 13.96 (13.96) 12.48 (12.71)

Notes to Table: This table displays the steady state aggregate and sectoral values used in the
numerical calculations of sectoral equity risk premium (ERP) in Table 1. The steady state
value for per capita aggregate personal income (W̄ ) is the sample mean, and P̄ is the sample
mean of the per capita consumption-to-income ratio C/W. The sectoral production variables
are the steady state values computed from the model, while the entries in parentheses are
the corresponding sample means.
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